Research Output per year

## Fingerprint Dive into the research topics where Michael Robert Yatauro is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

Degree Condition
Mathematics

Graph in graph theory
Mathematics

Hamiltonians
Engineering & Materials Science

Monotone
Mathematics

Toughness
Mathematics

Denominator
Mathematics

Lowest
Mathematics

Polynomials
Engineering & Materials Science

## Research Output 2011 2018

- 22 Citations
- 2 h-Index
- 6 Article

## The Edge Cover Probability Polynomial of a Graph and Optimal Network Construction

Yatauro, M. R., Mar 26 2018, (Accepted/In press) In : IEEE Transactions on Network Science and Engineering.Research output: Contribution to journal › Article

Polynomials

2
Citations
(Scopus)

## Best monotone degree conditions for binding number and cycle structure

Bauer, D., Nevo, A., Schmeichel, E., Woodall, D. R. & Yatauro, M., Nov 20 2015, In : Discrete Applied Mathematics. 195, p. 8-17 10 p.Research output: Contribution to journal › Article

Degree Condition

Hamiltonians

Monotone

Cycle

Graph in graph theory

14
Citations
(Scopus)

## Best Monotone Degree Conditions for Graph Properties: A Survey

Bauer, D., Broersma, H. J., van den Heuvel, J., Kahl, N., Nevo, A., Schmeichel, E., Woodall, D. R. & Yatauro, M., Jan 1 2015, In : Graphs and Combinatorics. 31, 1, p. 1-22 22 p.Research output: Contribution to journal › Article

Degree Condition

Monotone

Hamiltonicity

Graph in graph theory

Sufficient Conditions

## Binding number and tenacity

Yatauro, M. R., Nov 1 2014, In : Journal of Combinatorial Mathematics and Combinatorial Computing. 91, p. 185-196 12 p.Research output: Contribution to journal › Article

Lower bound

Graph in graph theory

2
Citations
(Scopus)

## Toughness and binding number

Bauer, D., Kahl, N., Schmeichel, E., Woodall, D. R. & Yatauro, M., Mar 11 2014, In : Discrete Applied Mathematics. 165, p. 60-68 9 p.Research output: Contribution to journal › Article

Toughness

Denominator

Lowest

Term

Graph in graph theory