Collaborative Research: Planning Grant: I/UCRC for Next Generation Nanomaterial and Device Engineering (NGeNE)

Project: Research project

Project Details

Description

The mission of the proposed Next Generation Nanomaterial and Device Engineering (NGeNE) center is to develop a science, engineering, and technology base for the rational design of next generation computers, starting from their underlying material embodiments and fundamental physical principles. To build a chip for information

processing, we must explore nanoscale logic and memory, photonics for high speed on-chip communication and thermal engineering to handle energy dissipation in 3D. The NGeNE center will address all these components, along with computational modeling, scientific training and education.

Various industrial sectors such as the semiconductor chip industry, optoelectronics, mobile and wireless technology, energy, photonics, chemical, biological and packaging industry, as well as the civilian and defense infrastructure, healthcare and the energy sector will directly benefit from this effort. The goal of the center will be to (a) form a critical University Industry Government nexus on emerging nanotechnology, (b) carry out industry relevant research using state of the art modeling, simulation, growth, characterization, fabrication and integration of

emerging nanomaterials and devices, (c) provide a competitive edge to industry and national labs by leveraging the multi-university intellectual resources for cost effective innovative solutions to their current problems, and (d) develop supporting curricula, create databases and train students and industry affiliates with the tools and knowledge infrastructure to meet their future work force requirements.

The proposed center for Next Generation Nanomaterial and Device Engineering (NGeNE) aims to form a University-Industry-Government (UIG) nexus towards the design and engineering of next generation nanomaterials and devices

with an emphasis on post-CMOS computing. This will rest on four pillars: Nanoelectronics and NanoMagnetism for Logic and Memory (Computation), Thermal for power management, and Photonics for on chip communication. The research thrusts span a large phase space from novel switching schemes to non-Boolean logic, beyond silicon to advanced magnetic, thermal and photonic materials. They combine physical models with computational software, compact models and architecture, heterogeneous growth and integration, nanofabrication, characterization, testing and reliability. The goal of the center will be to (a) form a critical University Industry Government nexus on emerging nanotechnology, (b) carry out industry relevant research using state of the art modeling, simulation, growth, characterization, fabrication and integration of emerging nanomaterials and devices, (c) provide a competitive edge to industry and national labs by leveraging the multi-university intellectual resources for cost effective innovative solutions to their current problems, and (d) develop supporting curricula, create databases and train students and industry affiliates with the tools and knowledge infrastructure to meet their future work force requirements.

StatusFinished
Effective start/end date4/15/153/31/17

Funding

  • National Science Foundation: $11,500.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.