NIRT: Active Electromechanical Nanostructures Without the Use of Piezoelectric Constituents

  • Yakobson, Boris (CoPI)
  • Krishnamoorti, Ramanan (CoPI)
  • Da Ounaies, Zoubei (CoPI)
  • Sharma, Pradeep (PI)
  • Ounaies, Zoubeida (CoPI)

Project: Research project

Project Details

Description

The objective of the proposed research is to promote a multi-disciplinary collaboration between theorists and experimentalists to understand and develop active nanostructured architectures such as nanocomposite skins and films that do not require any piezoelectric materials as constituents and in principle can be designed with any material combination. Modeling methods ranging from ab initio atomistic calculations to enriched continuum models will be employed to enhance understanding of flexoelectricity at the nanoscale and provide guidelines to select materials and engineer highly optimized, apparently piezoelectric nanostructures with the requisite symmetry, topology and size. The different topologies will be fabricated by precisely controlling the dispersion of suitably shaped nanoparticles in a polymer matrix (from soft elastomers to hard thermoplastics and thermosets) with external fields (flow, electrical & magnetic) as a means to tune the symmetry and provide the necessary 3-dimensional arrangement of the nanoinclusions. The expected benefits of the program will be both educational and societal. Anticipated research outcomes are an independence from Nature's limited selection of active electromechanical materials and an ability to design multifunctionality by assembling arbitrary non-active material combinations. Apart from resolutions of fundamental scientific questions related to piezoelectricity at the nanoscale, technological applications of the proposed research are anticipated in next generation actuators, sensors, MEMs and NEMs with consequent impact on diverse industries such as, Electronics, Space and Aerospace, Biomedical, Defense among others. The educational impact is that undergraduate and graduate students will be trained in emerging and interdisciplinary scholarly research. Research and education will be integrated by focusing on the education, outreach and recruitment through (1) Undergraduate summer research opportunities, (2) High School outreach using our existing NSF RET, REU and AGEP, and (3) Middle/High School student demonstrations. Research findings will be incorporated into courses, and broadly disseminated through conference presentations, scholarly publications, and the PIs's websites.

StatusFinished
Effective start/end date8/1/079/30/13

Funding

  • National Science Foundation: $1,293,022.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.