Role of the chloride channel ClC-2 in intestinal tight junction barrier recovery

Project: Research project

Project Details

Description

DESCRIPTION (provided by applicant): The apically located inter-cellular tight junctions (TJ) within the intestinal epithelium act as a paracellular barrier and prevent permeation of noxious luminal antigens. Loss of TJ barrier function is a key pathologic factor in intestinal disorders an inflammatory bowel diseases. Emerging evidence shows that intracellular vesicular membrane transport including caveolar transport is a key process in the formation of tight junction domains. Our preliminary studies indicated that the intestinal barrier recovery in the event of epithelial injury is impaired in the absence of ClC-2 chloride channel protein. Our preliminary studies also suggested that ClC-2 plays a vital role in the intestinal barrier recovery by modulation of intracellular trafficking of key tight junction protein occludin via its interaction with caveolae. Based on preliminary studies, we hypothesize that ClC-2 plays an integral role in the intestinal mucosal repair process by promoting recruitment of tight junction protein occludin via caveolin-1 dependent process. In specific aim 1, we plan to elucidate the role of ClC-2 in caveolar trafficking of occludin, and in aim 2, we intend to define the mechanisms of ClC-2 mediated enhancement of intestinal epithelial TJ barrier. Specific aim 3 is dedicated to testing our hypothesis in-vivo and defining the role of ClC-2 in intestinal barrier recovery. Clinically, repai of mucosal barrier in intestine is imperative for preventing further intestinal mucosal damage, and for therapeutic success. This study will provide a novel insight into the crucial role ClC-2 plays n intestinal barrier recovery. The proposed studies will provide us with mechanistic and potentially therapeutic information on how chloride channel ClC-2 enhances the gut barrier function.
StatusFinished
Effective start/end date4/1/143/31/15

Funding

  • NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES: $147,916.00

Fingerprint Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.