Targeting the Etiology of Diabetic Retinopathy

Project: Research project

Description

Project Summary Diabetic retinopathy (DR) is clinically defined as a disease of the retinal microvasculature, and most research on its pathogenesis to date has focused on the vasculature itself. Recent advances in multifocal ERG demonstrate that neuro-retinal defects precede and even predict the development of DR. Thus, it is important to investigate the molecular events that contribute to early loss of retinal adaptation to the metabolic environment in diabetes.!Translation of mRNA is a major regulatory step in gene expression that is important for controlling the expression of vascular endothelial growth factor (VEGF), as well as other critical growth factors and cytokines in response to metabolic stress. Our central hypothesis is that a diabetes-induced shift in the selection of mRNAs for translation within Müller glia results in loss of retinal homeostasis and the eventual development of DR. Müller cells, the principal glial cell of the retina, are well recognized for the role they play in the production of homeostatic and trophic factors that support both the vasculature and neuronal layers of the retina. In diabetic patients, glial activation occurs prior to clinical manifestation of DR and likely serves as an adaptive response to mitigate tissue damage. However, prolonged changes in Müller glial protein expression become causative in the development of retinal complications. Specifically, Müller glia are the principal source of increased retinal VEGF expression in diabetes, as conditional Muller cell specific disruption of VEGF prevents elevated growth factor expression and reduces retinal vascular pathology. Our laboratory has shown that diabetes-induced activation of the translational repressor 4E-BP1 promotes retinal VEGF expression and the development of visual dysfunction in a model of type 1 diabetes. The objective here is to address a fundamental gap in our understanding of the molecular events that produce early changes in Müller cell specific protein expression. Using a newly developed RiboTag mouse model, wherein expression of an epitope-tagged ribosomal subunit is directed to Müller glia, the proposed studies will provide an unprecedented assessment of translationally active mRNAs in Müller glia within the intact retina. The proposed studies are designed to characterize defects in the selection of specific mRNAs for translation in two experimental models of diabetes: streptozotocin administration and high fat/high carbohydrate diet. In addition to identifying regulatory mechanisms for specific mRNAs that contribute to glial dysfunction, the proposed studies will also assess the development of retinal defects and visual deficits in the two experimental models following Müller-specific genetic manipulation of the stress response protein REDD1 or protein O- GlcNAcylation (i.e. two novel mechanisms for mediating specific changes in mRNA translation). The rationale is that once the molecular defects in translational control mechanisms in retinal Müller cells are known, the function/assembly of translation initiation factors can be manipulated pharmacologically, resulting in new therapeutics that address dysregulated expression of multiple growth factors and cytokines including VEGF. !
StatusActive
Effective start/end date9/1/197/31/24

Funding

  • National Institutes of Health: $378,560.00

Fingerprint

Diabetic Retinopathy
Neuroglia
Vascular Endothelial Growth Factor A
Protein Biosynthesis
Retina
Intercellular Signaling Peptides and Proteins
Theoretical Models
Cytokines
Ependymoglial Cells
Ribosome Subunits
Retinal Diseases
Retinal Vessels
Peptide Initiation Factors
Messenger RNA
Physiological Stress
Proteins
Experimental Diabetes Mellitus
High Fat Diet
Heat-Shock Proteins
Microvessels