β-subunit myristoylation functions as an energy sensor by modulating the dynamics of AMP-activated Protein Kinase

Nada Ali, Naomi Ling, Srinath Krishnamurthy, Jonathan S. Oakhill, John W. Scott, David I. Stapleton, Bruce E. Kemp, Ganesh Srinivasan Anand, Paul R. Gooley

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The heterotrimeric AMP-activated protein kinase (AMPK), consisting of α, β and Î 3 subunits, is a stress-sensing enzyme that is activated by phosphorylation of its activation loop in response to increases in cellular AMP. N-terminal myristoylation of the β-subunit has been shown to suppress Thr172 phosphorylation, keeping AMPK in an inactive state. Here we use amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) to investigate the structural and dynamic properties of the mammalian myristoylated and non-myristoylated inactivated AMPK (D139A) in the presence and absence of nucleotides. HDX MS data suggests that the myristoyl group binds near the first helix of the C-terminal lobe of the kinase domain similar to other kinases. Our data, however, also shows that ATP.Mg2+ results in a global stabilization of myristoylated, but not non-myristoylated AMPK, and most notably for peptides of the activation loop of the α-kinase domain, the autoinhibitory sequence (AIS) and the βCBM. AMP does not have that effect and HDX measurements for myristoylated and non-myristoylated AMPK in the presence of AMP are similar. These differences in dynamics may account for a reduced basal rate of phosphorylation of Thr172 in myristoylated AMPK in skeletal muscle where endogenous ATP concentrations are very high.

Original languageEnglish (US)
Article number39417
JournalScientific reports
Volume6
DOIs
StatePublished - Dec 21 2016

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'β-subunit myristoylation functions as an energy sensor by modulating the dynamics of AMP-activated Protein Kinase'. Together they form a unique fingerprint.

Cite this