3D additive lattice topology optimization: A unit cell design approach

Bradley Hanks, Mary Frecker

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Non-stochastic lattice structures are patterned after the unit cell topology and are of interest to the research and design communities for improving stiffness to weight ratios and/or metamaterial design. While additive manufacturing (AM) increases design freedom, it remains difficult to design or select an appropriate unit cell topology. In this work, a ground structure topology optimization approach is developed for unit cell design. Using a multi-objective evolutionary algorithm, this framework incorporates a library of different objectives, constraints, and penalties. The Additive Lattice Topology Optimization (ALTO) approach generates novel lattice structures for AM from the selected design objectives. A key purpose of this framework is incorporating AM process considerations into the optimization through objectives, constraints, and penalty functions for improved manufacturability. Two case studies presented in this work demonstrate ALTO's ability to generate novel lattice structures with specific functionality while accounting for AM process constraints for laser powder bed fusion. Case Study 1 is an example of generating a lattice structure for heat sink applications. Case Study 2 demonstrates creation of three novel lattices with different stiffness properties, each with the same volume fraction. Using ground structure topology optimization and incorporating AM process considerations, ALTO is a unique approach for improved lattice structure design.

Original languageEnglish (US)
Title of host publication46th Design Automation Conference (DAC)
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884003
DOIs
StatePublished - 2020
EventASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020 - Virtual, Online
Duration: Aug 17 2020Aug 19 2020

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume11A-2020

Conference

ConferenceASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020
CityVirtual, Online
Period8/17/208/19/20

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of '3D additive lattice topology optimization: A unit cell design approach'. Together they form a unique fingerprint.

Cite this