3D image fusion and guidance for computer-assisted bronchoscopy

W. E. Higgins, L. Rai, S. A. Merritt, K. Lu, N. T. Linger, K. C. Yu

Research output: Contribution to journalConference article

10 Scopus citations

Abstract

The standard procedure for diagnosing lung cancer involves two stages. First, the physician evaluates a high-resolution three-dimensional (3D) computed-tomography (CT) chest image to produce a procedure plan. Next, the physician performs bronchoscopy on the patient, which involves navigating the the bronchoscope through the airways to planned biopsy sites. Unfortunately, the physician has no link between the 3D CT image data and the live video stream provided during bronchoscopy. In addition, these data sources differ greatly in what they physically give, and no true 3D planning tools exist for planning and guiding procedures. This makes it difficult for the physician to translate a CT-based procedure plan to the video domain of the bronchoscope. Thus, the physician must essentially perform biopsy blindly, and the skill levels between different physicians differ greatly. We describe a system that enables direct 3D CT-based procedure planning and provides direct 3D guidance during bronchoscopy. 3D CT-based information on biopsy sites is provided interactively as the physician moves the bronchoscope. Moreover, graphical information through a live fusion of the 3D CT data and bronchoscopic video is provided during the procedure. This information is coupled with a series of computer-graphics tools to give the physician a greatly augmented reality of the patient's interior anatomy during a procedure. Through a series of controlled tests and studies with human lung-cancer patients, we have found that the system not only reduces the variation in skill level between different physicians, but also increases biopsy success rate.

Original languageEnglish (US)
Article number60160A
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume6016
DOIs
StatePublished - Dec 1 2005
EventThree-Dimensional TV, Video, and Display IV - Boston, MA, United States
Duration: Oct 24 2005Oct 26 2005

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of '3D image fusion and guidance for computer-assisted bronchoscopy'. Together they form a unique fingerprint.

  • Cite this