3D modeling of electric fields in the LUX detector

D. S. Akerib, S. Alsum, H. M. Araújo, X. Bai, A. J. Bailey, J. Balajthy, P. Beltrame, E. P. Bernard, A. Bernstein, T. P. Biesiadzinski, E. M. Boulton, P. Brás, D. Byram, S. B. Cahn, M. C. Carmona-Benitez, C. Chan, A. Currie, J. E. Cutter, T. J.R. Davison, A. DobiE. Druszkiewicz, B. N. Edwards, S. R. Fallon, A. Fan, S. Fiorucci, R. J. Gaitskell, J. Genovesi, C. Ghag, M. G.D. Gilchriese, C. R. Hall, M. Hanhardt, S. J. Haselschwardt, S. A. Hertel, D. P. Hogan, M. Horn, D. Q. Huang, C. M. Ignarra, R. G. Jacobsen, W. Ji, K. Kamdin, K. Kazkaz, D. Khaitan, R. Knoche, N. A. Larsen, B. G. Lenardo, K. T. Lesko, A. Lindote, M. I. Lopes, A. Manalaysay, R. L. Mannino, M. F. Marzioni, D. N. McKinsey, D. M. Mei, J. Mock, M. Moongweluwan, J. A. Morad, A. St J. Murphy, C. Nehrkorn, H. N. Nelson, F. Neves, K. O'Sullivan, K. C. Oliver-Mallory, K. J. Palladino, E. K. Pease, C. Rhyne, S. Shaw, T. A. Shutt, C. Silva, M. Solmaz, V. N. Solovov, P. Sorensen, T. J. Sumner, M. Szydagis, D. J. Taylor, W. C. Taylor, B. P. Tennyson, P. A. Terman, D. R. Tiedt, W. H. To, M. Tripathi, L. Tvrznikova, S. Uvarov, V. Velan, J. R. Verbus, R. C. Webb, J. T. White, T. J. Whitis, M. S. Witherell, F. L.H. Wolfs, J. Xu, K. Yazdani, S. K. Young, C. Zhang

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ∼200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.

Original languageEnglish (US)
Article numberP11022
JournalJournal of Instrumentation
Volume12
Issue number11
DOIs
StatePublished - Nov 24 2017

Fingerprint

3D Modeling
Electric Field
Electric fields
Detector
Detectors
electric fields
detectors
polytetrafluoroethylene
Polytetrafluoroethylenes
Charge
weakly interacting massive particles
Multiphysics
Azimuth
liquid surfaces
Charge density
azimuth
Mean Value
Electrostatics
Discrimination
discrimination

All Science Journal Classification (ASJC) codes

  • Mathematical Physics
  • Instrumentation

Cite this

Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., ... Zhang, C. (2017). 3D modeling of electric fields in the LUX detector. Journal of Instrumentation, 12(11), [P11022]. https://doi.org/10.1088/1748-0221/12/11/P11022
Akerib, D. S. ; Alsum, S. ; Araújo, H. M. ; Bai, X. ; Bailey, A. J. ; Balajthy, J. ; Beltrame, P. ; Bernard, E. P. ; Bernstein, A. ; Biesiadzinski, T. P. ; Boulton, E. M. ; Brás, P. ; Byram, D. ; Cahn, S. B. ; Carmona-Benitez, M. C. ; Chan, C. ; Currie, A. ; Cutter, J. E. ; Davison, T. J.R. ; Dobi, A. ; Druszkiewicz, E. ; Edwards, B. N. ; Fallon, S. R. ; Fan, A. ; Fiorucci, S. ; Gaitskell, R. J. ; Genovesi, J. ; Ghag, C. ; Gilchriese, M. G.D. ; Hall, C. R. ; Hanhardt, M. ; Haselschwardt, S. J. ; Hertel, S. A. ; Hogan, D. P. ; Horn, M. ; Huang, D. Q. ; Ignarra, C. M. ; Jacobsen, R. G. ; Ji, W. ; Kamdin, K. ; Kazkaz, K. ; Khaitan, D. ; Knoche, R. ; Larsen, N. A. ; Lenardo, B. G. ; Lesko, K. T. ; Lindote, A. ; Lopes, M. I. ; Manalaysay, A. ; Mannino, R. L. ; Marzioni, M. F. ; McKinsey, D. N. ; Mei, D. M. ; Mock, J. ; Moongweluwan, M. ; Morad, J. A. ; Murphy, A. St J. ; Nehrkorn, C. ; Nelson, H. N. ; Neves, F. ; O'Sullivan, K. ; Oliver-Mallory, K. C. ; Palladino, K. J. ; Pease, E. K. ; Rhyne, C. ; Shaw, S. ; Shutt, T. A. ; Silva, C. ; Solmaz, M. ; Solovov, V. N. ; Sorensen, P. ; Sumner, T. J. ; Szydagis, M. ; Taylor, D. J. ; Taylor, W. C. ; Tennyson, B. P. ; Terman, P. A. ; Tiedt, D. R. ; To, W. H. ; Tripathi, M. ; Tvrznikova, L. ; Uvarov, S. ; Velan, V. ; Verbus, J. R. ; Webb, R. C. ; White, J. T. ; Whitis, T. J. ; Witherell, M. S. ; Wolfs, F. L.H. ; Xu, J. ; Yazdani, K. ; Young, S. K. ; Zhang, C. / 3D modeling of electric fields in the LUX detector. In: Journal of Instrumentation. 2017 ; Vol. 12, No. 11.
@article{06336fad41024eeb8716a60fd570caf8,
title = "3D modeling of electric fields in the LUX detector",
abstract = "This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ∼200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.",
author = "Akerib, {D. S.} and S. Alsum and Ara{\'u}jo, {H. M.} and X. Bai and Bailey, {A. J.} and J. Balajthy and P. Beltrame and Bernard, {E. P.} and A. Bernstein and Biesiadzinski, {T. P.} and Boulton, {E. M.} and P. Br{\'a}s and D. Byram and Cahn, {S. B.} and Carmona-Benitez, {M. C.} and C. Chan and A. Currie and Cutter, {J. E.} and Davison, {T. J.R.} and A. Dobi and E. Druszkiewicz and Edwards, {B. N.} and Fallon, {S. R.} and A. Fan and S. Fiorucci and Gaitskell, {R. J.} and J. Genovesi and C. Ghag and Gilchriese, {M. G.D.} and Hall, {C. R.} and M. Hanhardt and Haselschwardt, {S. J.} and Hertel, {S. A.} and Hogan, {D. P.} and M. Horn and Huang, {D. Q.} and Ignarra, {C. M.} and Jacobsen, {R. G.} and W. Ji and K. Kamdin and K. Kazkaz and D. Khaitan and R. Knoche and Larsen, {N. A.} and Lenardo, {B. G.} and Lesko, {K. T.} and A. Lindote and Lopes, {M. I.} and A. Manalaysay and Mannino, {R. L.} and Marzioni, {M. F.} and McKinsey, {D. N.} and Mei, {D. M.} and J. Mock and M. Moongweluwan and Morad, {J. A.} and Murphy, {A. St J.} and C. Nehrkorn and Nelson, {H. N.} and F. Neves and K. O'Sullivan and Oliver-Mallory, {K. C.} and Palladino, {K. J.} and Pease, {E. K.} and C. Rhyne and S. Shaw and Shutt, {T. A.} and C. Silva and M. Solmaz and Solovov, {V. N.} and P. Sorensen and Sumner, {T. J.} and M. Szydagis and Taylor, {D. J.} and Taylor, {W. C.} and Tennyson, {B. P.} and Terman, {P. A.} and Tiedt, {D. R.} and To, {W. H.} and M. Tripathi and L. Tvrznikova and S. Uvarov and V. Velan and Verbus, {J. R.} and Webb, {R. C.} and White, {J. T.} and Whitis, {T. J.} and Witherell, {M. S.} and Wolfs, {F. L.H.} and J. Xu and K. Yazdani and Young, {S. K.} and C. Zhang",
year = "2017",
month = "11",
day = "24",
doi = "10.1088/1748-0221/12/11/P11022",
language = "English (US)",
volume = "12",
journal = "Journal of Instrumentation",
issn = "1748-0221",
publisher = "IOP Publishing Ltd.",
number = "11",

}

Akerib, DS, Alsum, S, Araújo, HM, Bai, X, Bailey, AJ, Balajthy, J, Beltrame, P, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boulton, EM, Brás, P, Byram, D, Cahn, SB, Carmona-Benitez, MC, Chan, C, Currie, A, Cutter, JE, Davison, TJR, Dobi, A, Druszkiewicz, E, Edwards, BN, Fallon, SR, Fan, A, Fiorucci, S, Gaitskell, RJ, Genovesi, J, Ghag, C, Gilchriese, MGD, Hall, CR, Hanhardt, M, Haselschwardt, SJ, Hertel, SA, Hogan, DP, Horn, M, Huang, DQ, Ignarra, CM, Jacobsen, RG, Ji, W, Kamdin, K, Kazkaz, K, Khaitan, D, Knoche, R, Larsen, NA, Lenardo, BG, Lesko, KT, Lindote, A, Lopes, MI, Manalaysay, A, Mannino, RL, Marzioni, MF, McKinsey, DN, Mei, DM, Mock, J, Moongweluwan, M, Morad, JA, Murphy, ASJ, Nehrkorn, C, Nelson, HN, Neves, F, O'Sullivan, K, Oliver-Mallory, KC, Palladino, KJ, Pease, EK, Rhyne, C, Shaw, S, Shutt, TA, Silva, C, Solmaz, M, Solovov, VN, Sorensen, P, Sumner, TJ, Szydagis, M, Taylor, DJ, Taylor, WC, Tennyson, BP, Terman, PA, Tiedt, DR, To, WH, Tripathi, M, Tvrznikova, L, Uvarov, S, Velan, V, Verbus, JR, Webb, RC, White, JT, Whitis, TJ, Witherell, MS, Wolfs, FLH, Xu, J, Yazdani, K, Young, SK & Zhang, C 2017, '3D modeling of electric fields in the LUX detector', Journal of Instrumentation, vol. 12, no. 11, P11022. https://doi.org/10.1088/1748-0221/12/11/P11022

3D modeling of electric fields in the LUX detector. / Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J.R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G.D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D. M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L.H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.

In: Journal of Instrumentation, Vol. 12, No. 11, P11022, 24.11.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - 3D modeling of electric fields in the LUX detector

AU - Akerib, D. S.

AU - Alsum, S.

AU - Araújo, H. M.

AU - Bai, X.

AU - Bailey, A. J.

AU - Balajthy, J.

AU - Beltrame, P.

AU - Bernard, E. P.

AU - Bernstein, A.

AU - Biesiadzinski, T. P.

AU - Boulton, E. M.

AU - Brás, P.

AU - Byram, D.

AU - Cahn, S. B.

AU - Carmona-Benitez, M. C.

AU - Chan, C.

AU - Currie, A.

AU - Cutter, J. E.

AU - Davison, T. J.R.

AU - Dobi, A.

AU - Druszkiewicz, E.

AU - Edwards, B. N.

AU - Fallon, S. R.

AU - Fan, A.

AU - Fiorucci, S.

AU - Gaitskell, R. J.

AU - Genovesi, J.

AU - Ghag, C.

AU - Gilchriese, M. G.D.

AU - Hall, C. R.

AU - Hanhardt, M.

AU - Haselschwardt, S. J.

AU - Hertel, S. A.

AU - Hogan, D. P.

AU - Horn, M.

AU - Huang, D. Q.

AU - Ignarra, C. M.

AU - Jacobsen, R. G.

AU - Ji, W.

AU - Kamdin, K.

AU - Kazkaz, K.

AU - Khaitan, D.

AU - Knoche, R.

AU - Larsen, N. A.

AU - Lenardo, B. G.

AU - Lesko, K. T.

AU - Lindote, A.

AU - Lopes, M. I.

AU - Manalaysay, A.

AU - Mannino, R. L.

AU - Marzioni, M. F.

AU - McKinsey, D. N.

AU - Mei, D. M.

AU - Mock, J.

AU - Moongweluwan, M.

AU - Morad, J. A.

AU - Murphy, A. St J.

AU - Nehrkorn, C.

AU - Nelson, H. N.

AU - Neves, F.

AU - O'Sullivan, K.

AU - Oliver-Mallory, K. C.

AU - Palladino, K. J.

AU - Pease, E. K.

AU - Rhyne, C.

AU - Shaw, S.

AU - Shutt, T. A.

AU - Silva, C.

AU - Solmaz, M.

AU - Solovov, V. N.

AU - Sorensen, P.

AU - Sumner, T. J.

AU - Szydagis, M.

AU - Taylor, D. J.

AU - Taylor, W. C.

AU - Tennyson, B. P.

AU - Terman, P. A.

AU - Tiedt, D. R.

AU - To, W. H.

AU - Tripathi, M.

AU - Tvrznikova, L.

AU - Uvarov, S.

AU - Velan, V.

AU - Verbus, J. R.

AU - Webb, R. C.

AU - White, J. T.

AU - Whitis, T. J.

AU - Witherell, M. S.

AU - Wolfs, F. L.H.

AU - Xu, J.

AU - Yazdani, K.

AU - Young, S. K.

AU - Zhang, C.

PY - 2017/11/24

Y1 - 2017/11/24

N2 - This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ∼200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.

AB - This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ∼200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.

UR - http://www.scopus.com/inward/record.url?scp=85038619276&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85038619276&partnerID=8YFLogxK

U2 - 10.1088/1748-0221/12/11/P11022

DO - 10.1088/1748-0221/12/11/P11022

M3 - Article

AN - SCOPUS:85038619276

VL - 12

JO - Journal of Instrumentation

JF - Journal of Instrumentation

SN - 1748-0221

IS - 11

M1 - P11022

ER -

Akerib DS, Alsum S, Araújo HM, Bai X, Bailey AJ, Balajthy J et al. 3D modeling of electric fields in the LUX detector. Journal of Instrumentation. 2017 Nov 24;12(11). P11022. https://doi.org/10.1088/1748-0221/12/11/P11022