A carrier magnitude varying modulation for distributed static series compensator to achieve a maximum reactive power generating capability

Yunting Liu, Fang Zheng Peng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Conventional single-phase H-bridge applications have second-order harmonic ripple power on the dc bus. However, in applications like a voltage source inverter (VSI) module of a Distributed Static Series Compensator (DSSC), a larger dc bus voltage fluctuation is acceptable since the dc bus connects to no load. This paper releases the constraints on dc bus voltage ripples so that the dc-bus capacitor can be fully utilized. Based on this idea, a carrier magnitude varying modulation is proposed, in which the VSI can generate ten times the reactive power of a conventional SPWM based VSI. The system reactive power generating capability is assessed to compare with the conventional SPWM based VSI and the constant duty cycle control based VSI. A PI controller is applied to the system to regulate the ac current. The analysis and design are validated by simulation and experiments.

Original languageEnglish (US)
Title of host publicationAPEC 2018 - 33rd Annual IEEE Applied Power Electronics Conference and Exposition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1597-1602
Number of pages6
ISBN (Electronic)9781538611807
DOIs
StatePublished - Apr 18 2018
Event33rd Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2018 - San Antonio, United States
Duration: Mar 4 2018Mar 8 2018

Publication series

NameConference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC
Volume2018-March

Conference

Conference33rd Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2018
Country/TerritoryUnited States
CitySan Antonio
Period3/4/183/8/18

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A carrier magnitude varying modulation for distributed static series compensator to achieve a maximum reactive power generating capability'. Together they form a unique fingerprint.

Cite this