A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with icecube

The IceCube Collaboration

Research output: Contribution to journalArticle

297 Scopus citations

Abstract

Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies ≳30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, νμ-induced tracks from the Northern Hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle, and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index -2.50 ± 0.09 and a flux at 100 TeV of (6.7-1.2 +1.1) × 10-18 GeV-1 s-1cm-2. Under the same assumptions, an unbroken power law with index -2 is disfavored with a significance of 3.8σ (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1σ (p = 1.7%) if instead we compare the best fit to a spectrum with index .2 that has an exponential cut-off at high energies. Allowing the electron-neutrino flux to deviate from the other two flavors, we find a νe fraction of 0.18 ± 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay-dominated sources, is rejected with a significance of 3.6σ (p = 0.014%).

Original languageEnglish (US)
Article number98
JournalAstrophysical Journal
Volume809
Issue number1
DOIs
StatePublished - Aug 10 2015

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with icecube'. Together they form a unique fingerprint.

  • Cite this