### Abstract

We find a one-point Gleason part Š ff the Šilov boundary of H^{∞}(Δ) such that the maximal ideal M_{Š} factors but such that pairs do not factor in M_{Š}.

Original language | English (US) |
---|---|

Pages (from-to) | 435-441 |

Number of pages | 7 |

Journal | Proceedings of the American Mathematical Society |

Volume | 113 |

Issue number | 2 |

DOIs | |

State | Published - Jan 1 1991 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Mathematics(all)
- Applied Mathematics

### Cite this

}

**A commutative banach algebra with factorization of elements but not of pairs.** / Ouzomgi, Samir.

Research output: Contribution to journal › Article

TY - JOUR

T1 - A commutative banach algebra with factorization of elements but not of pairs

AU - Ouzomgi, Samir

PY - 1991/1/1

Y1 - 1991/1/1

N2 - We find a one-point Gleason part Š ff the Šilov boundary of H∞(Δ) such that the maximal ideal MŠ factors but such that pairs do not factor in MŠ.

AB - We find a one-point Gleason part Š ff the Šilov boundary of H∞(Δ) such that the maximal ideal MŠ factors but such that pairs do not factor in MŠ.

UR - http://www.scopus.com/inward/record.url?scp=84968491215&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84968491215&partnerID=8YFLogxK

U2 - 10.1090/s0002-9939-1991-1055776-4

DO - 10.1090/s0002-9939-1991-1055776-4

M3 - Article

AN - SCOPUS:84968491215

VL - 113

SP - 435

EP - 441

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 2

ER -