TY - GEN
T1 - A comparison of parametric and non-parametric machine learning approaches for the uncertain lambert problem
AU - Guého, Damien
AU - Schwab, David
AU - Singla, Puneet
AU - Melton, Robert G.
N1 - Publisher Copyright:
© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - The uncertain Lambert problem has important applications in Space Situational Awareness (SSA). While formulating the solution to this problem, it is of great interest to characterize the uncertainty associated with the solution as a function of position vector uncertainties at initial and final times. Previous work in this respect has concentrated on deriving a stochastic framework that exploits dynamical system theory in conjunction with non-product quadrature methods to compute higher order sensitivity matrices for accurately characterizing the uncertainty associated with Lambert problem solution. While deep learning tools have gained tremendous attention in various fields such as physics, biology, and manufacturing, existing tools for regression and classification do not capture model uncertainty. In comparison, Bayesian-based models offer a solid and robust mathematically grounded framework to reason about model uncertainty, but usually come with a prohibitive computational cost. In aerospace systems, representing model uncertainty is of crucial importance. The objective of this work will be to conduct a detailed comparison between classical dynamical system based approaches with recent advances in Machine Learning (ML) to characterize the uncertainty associated with the Lambert problem solution. In particular, we will consider parametric ML approaches such as multi-layered neural networks and a non-parametric Bayesian approach known as Gaussian Process Regression to learn a surrogate model representing the Lambert problem solution in the neighborhood of the nominal solution. Numerical experiments will be conducted to assess the relative merits of each of the methods considered in terms of accuracy of representing the uncertainty associated with the Lambert problem solution as well as numerical efficiency.
AB - The uncertain Lambert problem has important applications in Space Situational Awareness (SSA). While formulating the solution to this problem, it is of great interest to characterize the uncertainty associated with the solution as a function of position vector uncertainties at initial and final times. Previous work in this respect has concentrated on deriving a stochastic framework that exploits dynamical system theory in conjunction with non-product quadrature methods to compute higher order sensitivity matrices for accurately characterizing the uncertainty associated with Lambert problem solution. While deep learning tools have gained tremendous attention in various fields such as physics, biology, and manufacturing, existing tools for regression and classification do not capture model uncertainty. In comparison, Bayesian-based models offer a solid and robust mathematically grounded framework to reason about model uncertainty, but usually come with a prohibitive computational cost. In aerospace systems, representing model uncertainty is of crucial importance. The objective of this work will be to conduct a detailed comparison between classical dynamical system based approaches with recent advances in Machine Learning (ML) to characterize the uncertainty associated with the Lambert problem solution. In particular, we will consider parametric ML approaches such as multi-layered neural networks and a non-parametric Bayesian approach known as Gaussian Process Regression to learn a surrogate model representing the Lambert problem solution in the neighborhood of the nominal solution. Numerical experiments will be conducted to assess the relative merits of each of the methods considered in terms of accuracy of representing the uncertainty associated with the Lambert problem solution as well as numerical efficiency.
UR - http://www.scopus.com/inward/record.url?scp=85092389800&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092389800&partnerID=8YFLogxK
U2 - 10.2514/6.2020-1911
DO - 10.2514/6.2020-1911
M3 - Conference contribution
AN - SCOPUS:85092389800
SN - 9781624105951
T3 - AIAA Scitech 2020 Forum
BT - AIAA Scitech 2020 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Scitech Forum, 2020
Y2 - 6 January 2020 through 10 January 2020
ER -