A Comparison of Two-Stage Approaches for Fitting Nonlinear Ordinary Differential Equation Models with Mixed Effects

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Several approaches exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA; Ramsay & Silverman, 2005), generalized local linear approximation (GLLA; Boker, Deboeck, Edler, & Peel, 2010), and generalized orthogonal local derivative approximation (GOLD; Deboeck, 2010). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo (MC) study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children’s self-regulation.

Original languageEnglish (US)
Pages (from-to)154-184
Number of pages31
JournalMultivariate Behavioral Research
Volume51
Issue number2-3
DOIs
StatePublished - May 3 2016

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Experimental and Cognitive Psychology
  • Arts and Humanities (miscellaneous)

Fingerprint Dive into the research topics of 'A Comparison of Two-Stage Approaches for Fitting Nonlinear Ordinary Differential Equation Models with Mixed Effects'. Together they form a unique fingerprint.

Cite this