A computational and experimental study of anhydrous phosphotungstic acid and its interaction with water molecules

Michael J. Janik, Kimberly A. Campbell, Billy B. Bardin, Robert J. Davis, Matthew Neurock

Research output: Contribution to journalArticle

80 Scopus citations

Abstract

The hydration state of phosphotungstic acid (H3PW 12O40) was explored through the use of in situ Fourier transform infrared (FT-IR) spectroscopy, water sorption microcalorimetry, and density functional theory (DFT) quantum chemical calculations. In addition, the proton affinities of the various sites on the Keggin unit were evaluated. The small differences (< 10 kJ mol-1) between the proton affinities of bridge and terminal oxygen atoms indicate that protons likely reside on both types of sites on the Keggin unit. Vibrational spectra calculated by DFT and measured experimentally by in situ FT-IR spectroscopy compare very well. The adsorption energy of a water molecule on an anhydrous Keggin unit was calculated to be approximately -55 to -70 kJ mol-1 for the formation of H3O+, independent of protonic site. The range compares well to the heat of water sorption (-65 kJ mol-1) determined from microcalorimetry on a sample dehydrated at 573 K. The uptake of gaseous water molecules was found to be five times higher on a sample pretreated at 473K than on one pretreated at 573 K, indicating that the hydrated secondary structure does not reform after the high temperature pretreatment. In situ FT-IR spectroscopy confirms the lack of reversibility during dehydration/rehydration treatment for samples heated to 573 K.

Original languageEnglish (US)
Pages (from-to)51-68
Number of pages18
JournalApplied Catalysis A: General
Volume256
Issue number1-2
DOIs
StatePublished - Dec 30 2003

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Process Chemistry and Technology

Cite this