A dynamic cadaver model of the stance phase of gait: Performance characteristics and kinetic validation

Neil A. Sharkey, Andrew J. Hamel

Research output: Contribution to journalArticlepeer-review

86 Scopus citations

Abstract

Objective. This study was undertaken to evaluate the performance of a new dynamic laboratory model of the stance phase of gait. Design. Five cadaver feet were repetitively tested in the apparatus. Background. Typical biomechanical investigations of cadaver feet simply place a static load on the tibia. The present system was designed to better simulate the changing in-vivo loading environment of the foot and ankle during gait. Methods. The device mimics the behavior of the tibia, foot, and ankle from heel-strike to toe-off by reproducing the physiologic actions of five extrinsic foot muscles and physiologic motion at the proximal tibia. To verify its utility, cadaver gait simulations were conducted while measuring applied muscle forces, ground reaction forces, and plantar pressures. Results. Dynamic muscle forces were consistently delivered to within 10% of pre-programmed values. Dynamic measurements of ground reaction forces and plantar pressure were similar to those measured in healthy human subjects. Peak vertical (y), foreaft (x) and medio-lateral (z) forces were 110, 18, and 4% of body weight respectively. Compressive force in the tibial shaft reached 410% of body weight.

Original languageEnglish (US)
Pages (from-to)420-433
Number of pages14
JournalClinical Biomechanics
Volume13
Issue number6
DOIs
StatePublished - Sep 1998

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'A dynamic cadaver model of the stance phase of gait: Performance characteristics and kinetic validation'. Together they form a unique fingerprint.

Cite this