A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic

Alexei N. Skorobogatov, Yuriy G. Zarkhin

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Let p be an odd prime and let k be a field finitely generated over the finite field with p elements. For any K3 surface X over k, we prove that the cokernel of the natural map Br(k)→Br(X) is finite modulo the p-primary torsion subgroup.

Original languageEnglish (US)
Pages (from-to)11404-11418
Number of pages15
JournalInternational Mathematics Research Notices
Volume2015
Issue number21
DOIs
StatePublished - Jan 1 2015

Fingerprint

Brauer Group
K3 Surfaces
Finiteness
Finitely Generated
Torsion
Galois field
Modulo
Odd
Subgroup
Theorem

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{a0ac1d49a3e745b5bee695199f36dfa0,
title = "A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic",
abstract = "Let p be an odd prime and let k be a field finitely generated over the finite field with p elements. For any K3 surface X over k, we prove that the cokernel of the natural map Br(k)→Br(X) is finite modulo the p-primary torsion subgroup.",
author = "Skorobogatov, {Alexei N.} and Zarkhin, {Yuriy G.}",
year = "2015",
month = "1",
day = "1",
doi = "10.1093/imrn/rnv030",
language = "English (US)",
volume = "2015",
pages = "11404--11418",
journal = "International Mathematics Research Notices",
issn = "1073-7928",
publisher = "Oxford University Press",
number = "21",

}

A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic. / Skorobogatov, Alexei N.; Zarkhin, Yuriy G.

In: International Mathematics Research Notices, Vol. 2015, No. 21, 01.01.2015, p. 11404-11418.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic

AU - Skorobogatov, Alexei N.

AU - Zarkhin, Yuriy G.

PY - 2015/1/1

Y1 - 2015/1/1

N2 - Let p be an odd prime and let k be a field finitely generated over the finite field with p elements. For any K3 surface X over k, we prove that the cokernel of the natural map Br(k)→Br(X) is finite modulo the p-primary torsion subgroup.

AB - Let p be an odd prime and let k be a field finitely generated over the finite field with p elements. For any K3 surface X over k, we prove that the cokernel of the natural map Br(k)→Br(X) is finite modulo the p-primary torsion subgroup.

UR - http://www.scopus.com/inward/record.url?scp=84975728163&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84975728163&partnerID=8YFLogxK

U2 - 10.1093/imrn/rnv030

DO - 10.1093/imrn/rnv030

M3 - Article

VL - 2015

SP - 11404

EP - 11418

JO - International Mathematics Research Notices

JF - International Mathematics Research Notices

SN - 1073-7928

IS - 21

ER -