A first-principles study of molecular oxygen dissociation at an electrode surface

A comparison of potential variation and coadsorption effects

Sally A. Wasileski, Michael John Janik

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

Influences of coadsorbed sodium and water, aqueous solvent, and electrode potential on the kinetics of O2 dissociation over Pt(111) are systematically investigated using density functional theory models of vacuum and electrochemical interfaces. Na coadsorption alters the electronic states of Pt to stabilize the reactant (O2*), transition, and product (2O*) states by facilitating electron donation to oxygen, causing a more exothermic reaction energy (-0.84 eV for Na and O2, -0.81 eV for isolated O2) and a decrease in dissociation barrier (0.39 eV for Na and O2, 0.57 eV for isolated O2). Solvation decreases the reaction energy (-0.67 eV) due to enhanced hydrogen bond stabilization of O 2* compared to 2O*. The influence of Na is less pronounced at the solvated interface (barrier decreases by only 0.11 eV) because H2O screens Na charge-donation. In the electrochemical model system, the dissociation energy becomes more exothermic and the barrier decreases toward more positive potentials. Potential-dependent behavior results from changes in interfacial dipole moment and polarizability between O 2*, the dissociation transition state, and 2O*; each are influenced by changes in adsorption and hydrogen bonding. Coadsorption of Na in the solvated system dampens the dipole moment change between O 2* and 2O* and significantly increases the polarizability at the dissociation transition state and for 2O*; the combination causes little change in the reaction energy but reduces the activation barrier by 0.08 eV at 0 V versus NHE. The potential-dependent behavior contrasts that determined at a constant surface charge or from an applied electric field, illustrating the importance of considering the electrochemical potential at the fully-solvated interface in determining reaction energetics, even for non-redox reactions.

Original languageEnglish (US)
Pages (from-to)3613-3627
Number of pages15
JournalPhysical Chemistry Chemical Physics
Volume10
Issue number25
DOIs
StatePublished - Jun 30 2008

Fingerprint

Molecular oxygen
dissociation
Electrodes
electrodes
oxygen
Dipole moment
Hydrogen bonds
dipole moments
Exothermic reactions
exothermic reactions
energy
Solvation
Electronic states
Surface charge
Density functional theory
solvation
Stabilization
stabilization
Sodium
Chemical activation

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this

@article{612cc541685c47fba81b7e5dfbb45910,
title = "A first-principles study of molecular oxygen dissociation at an electrode surface: A comparison of potential variation and coadsorption effects",
abstract = "Influences of coadsorbed sodium and water, aqueous solvent, and electrode potential on the kinetics of O2 dissociation over Pt(111) are systematically investigated using density functional theory models of vacuum and electrochemical interfaces. Na coadsorption alters the electronic states of Pt to stabilize the reactant (O2*), transition, and product (2O*) states by facilitating electron donation to oxygen, causing a more exothermic reaction energy (-0.84 eV for Na and O2, -0.81 eV for isolated O2) and a decrease in dissociation barrier (0.39 eV for Na and O2, 0.57 eV for isolated O2). Solvation decreases the reaction energy (-0.67 eV) due to enhanced hydrogen bond stabilization of O 2* compared to 2O*. The influence of Na is less pronounced at the solvated interface (barrier decreases by only 0.11 eV) because H2O screens Na charge-donation. In the electrochemical model system, the dissociation energy becomes more exothermic and the barrier decreases toward more positive potentials. Potential-dependent behavior results from changes in interfacial dipole moment and polarizability between O 2*, the dissociation transition state, and 2O*; each are influenced by changes in adsorption and hydrogen bonding. Coadsorption of Na in the solvated system dampens the dipole moment change between O 2* and 2O* and significantly increases the polarizability at the dissociation transition state and for 2O*; the combination causes little change in the reaction energy but reduces the activation barrier by 0.08 eV at 0 V versus NHE. The potential-dependent behavior contrasts that determined at a constant surface charge or from an applied electric field, illustrating the importance of considering the electrochemical potential at the fully-solvated interface in determining reaction energetics, even for non-redox reactions.",
author = "Wasileski, {Sally A.} and Janik, {Michael John}",
year = "2008",
month = "6",
day = "30",
doi = "10.1039/b803157f",
language = "English (US)",
volume = "10",
pages = "3613--3627",
journal = "Physical Chemistry Chemical Physics",
issn = "1463-9076",
publisher = "Royal Society of Chemistry",
number = "25",

}

TY - JOUR

T1 - A first-principles study of molecular oxygen dissociation at an electrode surface

T2 - A comparison of potential variation and coadsorption effects

AU - Wasileski, Sally A.

AU - Janik, Michael John

PY - 2008/6/30

Y1 - 2008/6/30

N2 - Influences of coadsorbed sodium and water, aqueous solvent, and electrode potential on the kinetics of O2 dissociation over Pt(111) are systematically investigated using density functional theory models of vacuum and electrochemical interfaces. Na coadsorption alters the electronic states of Pt to stabilize the reactant (O2*), transition, and product (2O*) states by facilitating electron donation to oxygen, causing a more exothermic reaction energy (-0.84 eV for Na and O2, -0.81 eV for isolated O2) and a decrease in dissociation barrier (0.39 eV for Na and O2, 0.57 eV for isolated O2). Solvation decreases the reaction energy (-0.67 eV) due to enhanced hydrogen bond stabilization of O 2* compared to 2O*. The influence of Na is less pronounced at the solvated interface (barrier decreases by only 0.11 eV) because H2O screens Na charge-donation. In the electrochemical model system, the dissociation energy becomes more exothermic and the barrier decreases toward more positive potentials. Potential-dependent behavior results from changes in interfacial dipole moment and polarizability between O 2*, the dissociation transition state, and 2O*; each are influenced by changes in adsorption and hydrogen bonding. Coadsorption of Na in the solvated system dampens the dipole moment change between O 2* and 2O* and significantly increases the polarizability at the dissociation transition state and for 2O*; the combination causes little change in the reaction energy but reduces the activation barrier by 0.08 eV at 0 V versus NHE. The potential-dependent behavior contrasts that determined at a constant surface charge or from an applied electric field, illustrating the importance of considering the electrochemical potential at the fully-solvated interface in determining reaction energetics, even for non-redox reactions.

AB - Influences of coadsorbed sodium and water, aqueous solvent, and electrode potential on the kinetics of O2 dissociation over Pt(111) are systematically investigated using density functional theory models of vacuum and electrochemical interfaces. Na coadsorption alters the electronic states of Pt to stabilize the reactant (O2*), transition, and product (2O*) states by facilitating electron donation to oxygen, causing a more exothermic reaction energy (-0.84 eV for Na and O2, -0.81 eV for isolated O2) and a decrease in dissociation barrier (0.39 eV for Na and O2, 0.57 eV for isolated O2). Solvation decreases the reaction energy (-0.67 eV) due to enhanced hydrogen bond stabilization of O 2* compared to 2O*. The influence of Na is less pronounced at the solvated interface (barrier decreases by only 0.11 eV) because H2O screens Na charge-donation. In the electrochemical model system, the dissociation energy becomes more exothermic and the barrier decreases toward more positive potentials. Potential-dependent behavior results from changes in interfacial dipole moment and polarizability between O 2*, the dissociation transition state, and 2O*; each are influenced by changes in adsorption and hydrogen bonding. Coadsorption of Na in the solvated system dampens the dipole moment change between O 2* and 2O* and significantly increases the polarizability at the dissociation transition state and for 2O*; the combination causes little change in the reaction energy but reduces the activation barrier by 0.08 eV at 0 V versus NHE. The potential-dependent behavior contrasts that determined at a constant surface charge or from an applied electric field, illustrating the importance of considering the electrochemical potential at the fully-solvated interface in determining reaction energetics, even for non-redox reactions.

UR - http://www.scopus.com/inward/record.url?scp=45749090910&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=45749090910&partnerID=8YFLogxK

U2 - 10.1039/b803157f

DO - 10.1039/b803157f

M3 - Article

VL - 10

SP - 3613

EP - 3627

JO - Physical Chemistry Chemical Physics

JF - Physical Chemistry Chemical Physics

SN - 1463-9076

IS - 25

ER -