TY - JOUR
T1 - A flow classifier with tamper-resistant features and an evaluation of its portability to new domains
AU - Zou, Guixi
AU - Kesidis, George
AU - Miller, David J.
N1 - Funding Information:
Manuscript received 1 August 2010; revised 5 January and 24 February 2011. This material is based upon work supported by the National Science Foundation under Grant No. 0915552 and a Cisco Systems URP gift. The authors are with the EE and CS&E Depts, Pennsylvania State University, University Park, PA, 16802, USA. Digital Object Identifier 10.1109/JSAC.2011.110810.
PY - 2011/8
Y1 - 2011/8
N2 - Flow classification by application type is motivated by on-line anomaly detection, off-line network planning, and on-line enforcement of terms-of-use policies by public ISPs or by administrators of private-enterprise networks. Both signature matching and a variety of feature-based pattern recognition methods have been applied to address this problem. In this paper, we propose a TCP flow classifier that employs neither packet header information that is protocol-specific (including port numbers) nor packet-payload information. Techniques based on the former are readily evadable, while detailed yet scalable inspection of packet payloads is difficult to achieve, may violate privacy laws, and is defeated by data encryption. Our classifier is tested on two contemporary publicly available datasets recorded in similar networking contexts. We consider the often encountered scenario where ground-truth labels, necessary for supervised classifier training, are unavailable for a domain where flow classification needs to be applied. In this case, one must "port over" a classifier trained on one domain to make decisions on another. We address issues in reconciling differences in class definitions between the two domains. We also demonstrate by our results that domain differences in the class-conditional feature distributions, which will exist in practice, can lead to substantial losses in classification accuracy on the new domain. Finally, we also propose and evaluate a hypothesis testing approach to detect port spoofing by exploiting confusion matrix statistics.
AB - Flow classification by application type is motivated by on-line anomaly detection, off-line network planning, and on-line enforcement of terms-of-use policies by public ISPs or by administrators of private-enterprise networks. Both signature matching and a variety of feature-based pattern recognition methods have been applied to address this problem. In this paper, we propose a TCP flow classifier that employs neither packet header information that is protocol-specific (including port numbers) nor packet-payload information. Techniques based on the former are readily evadable, while detailed yet scalable inspection of packet payloads is difficult to achieve, may violate privacy laws, and is defeated by data encryption. Our classifier is tested on two contemporary publicly available datasets recorded in similar networking contexts. We consider the often encountered scenario where ground-truth labels, necessary for supervised classifier training, are unavailable for a domain where flow classification needs to be applied. In this case, one must "port over" a classifier trained on one domain to make decisions on another. We address issues in reconciling differences in class definitions between the two domains. We also demonstrate by our results that domain differences in the class-conditional feature distributions, which will exist in practice, can lead to substantial losses in classification accuracy on the new domain. Finally, we also propose and evaluate a hypothesis testing approach to detect port spoofing by exploiting confusion matrix statistics.
UR - http://www.scopus.com/inward/record.url?scp=80051494033&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051494033&partnerID=8YFLogxK
U2 - 10.1109/JSAC.2011.110810
DO - 10.1109/JSAC.2011.110810
M3 - Article
AN - SCOPUS:80051494033
VL - 29
SP - 1449
EP - 1460
JO - IEEE Journal on Selected Areas in Communications
JF - IEEE Journal on Selected Areas in Communications
SN - 0733-8716
IS - 7
M1 - 5963163
ER -