A global climatology of extratropical transition. Part II: Statistical performance of the cyclone phase space

Melanie Bieli, Suzana J. Camargo, Adam H. Sobel, Jenni L. Evans, Timothy Hall

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

This study analyzes the differences between an objective, automated identification of tropical cyclones (TCs) that undergo extratropical transition (ET), and the designation of ET determined subjectively by human forecasters in best track data in all basins globally. The objective identification of ET is based on the cyclone phase space (CPS), calculated from the Japanese 55-yr Reanalysis (JRA-55) or the ECMWF interim reanalysis (ERA-Interim). The resulting classification into ET storms and non-ET storms underlies the global climatology of ET presented in Part I of this study. Here, the authors investigate how well the CPS classifications agree with those in the best track records calculated from JRA-55 or from ERA-Interim data. According to F1 scores and Matthews correlation coefficients (MCCs), the classification of ET storms in the CPS agrees best with the best track classification in the western North Pacific (MCC > 0.7) and the North Atlantic (MCC > 0.5). In other basins, the correlation between the CPS classification and the best track classification is only slightly higher than that of a random classification. The JRA-55 classification achieves higher performance scores than does the ERA-Interim classification, and the differences are statistically significant in all basins. The lower performance of ERA-Interim is mainly due to a higher false alarm rate, particularly in the eastern North Pacific. Overall, the results show that while the CPS-based classifications are good enough to be useful for many purposes, there is almost certainly room for improvement-in the representation of the storms in reanalyses, in our objective metrics of ET, and in our scientific understanding of the ET process.

Original languageEnglish (US)
Pages (from-to)3583-3597
Number of pages15
JournalJournal of Climate
Volume32
Issue number12
DOIs
StatePublished - Jun 1 2019

Fingerprint

cyclone
climatology
basin
tropical cyclone

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Cite this

Bieli, Melanie ; Camargo, Suzana J. ; Sobel, Adam H. ; Evans, Jenni L. ; Hall, Timothy. / A global climatology of extratropical transition. Part II : Statistical performance of the cyclone phase space. In: Journal of Climate. 2019 ; Vol. 32, No. 12. pp. 3583-3597.
@article{adc401e624d74931bed0c0ebd55bb8da,
title = "A global climatology of extratropical transition. Part II: Statistical performance of the cyclone phase space",
abstract = "This study analyzes the differences between an objective, automated identification of tropical cyclones (TCs) that undergo extratropical transition (ET), and the designation of ET determined subjectively by human forecasters in best track data in all basins globally. The objective identification of ET is based on the cyclone phase space (CPS), calculated from the Japanese 55-yr Reanalysis (JRA-55) or the ECMWF interim reanalysis (ERA-Interim). The resulting classification into ET storms and non-ET storms underlies the global climatology of ET presented in Part I of this study. Here, the authors investigate how well the CPS classifications agree with those in the best track records calculated from JRA-55 or from ERA-Interim data. According to F1 scores and Matthews correlation coefficients (MCCs), the classification of ET storms in the CPS agrees best with the best track classification in the western North Pacific (MCC > 0.7) and the North Atlantic (MCC > 0.5). In other basins, the correlation between the CPS classification and the best track classification is only slightly higher than that of a random classification. The JRA-55 classification achieves higher performance scores than does the ERA-Interim classification, and the differences are statistically significant in all basins. The lower performance of ERA-Interim is mainly due to a higher false alarm rate, particularly in the eastern North Pacific. Overall, the results show that while the CPS-based classifications are good enough to be useful for many purposes, there is almost certainly room for improvement-in the representation of the storms in reanalyses, in our objective metrics of ET, and in our scientific understanding of the ET process.",
author = "Melanie Bieli and Camargo, {Suzana J.} and Sobel, {Adam H.} and Evans, {Jenni L.} and Timothy Hall",
year = "2019",
month = "6",
day = "1",
doi = "10.1175/JCLI-D-18-0052.1",
language = "English (US)",
volume = "32",
pages = "3583--3597",
journal = "Journal of Climate",
issn = "0894-8755",
publisher = "American Meteorological Society",
number = "12",

}

A global climatology of extratropical transition. Part II : Statistical performance of the cyclone phase space. / Bieli, Melanie; Camargo, Suzana J.; Sobel, Adam H.; Evans, Jenni L.; Hall, Timothy.

In: Journal of Climate, Vol. 32, No. 12, 01.06.2019, p. 3583-3597.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A global climatology of extratropical transition. Part II

T2 - Statistical performance of the cyclone phase space

AU - Bieli, Melanie

AU - Camargo, Suzana J.

AU - Sobel, Adam H.

AU - Evans, Jenni L.

AU - Hall, Timothy

PY - 2019/6/1

Y1 - 2019/6/1

N2 - This study analyzes the differences between an objective, automated identification of tropical cyclones (TCs) that undergo extratropical transition (ET), and the designation of ET determined subjectively by human forecasters in best track data in all basins globally. The objective identification of ET is based on the cyclone phase space (CPS), calculated from the Japanese 55-yr Reanalysis (JRA-55) or the ECMWF interim reanalysis (ERA-Interim). The resulting classification into ET storms and non-ET storms underlies the global climatology of ET presented in Part I of this study. Here, the authors investigate how well the CPS classifications agree with those in the best track records calculated from JRA-55 or from ERA-Interim data. According to F1 scores and Matthews correlation coefficients (MCCs), the classification of ET storms in the CPS agrees best with the best track classification in the western North Pacific (MCC > 0.7) and the North Atlantic (MCC > 0.5). In other basins, the correlation between the CPS classification and the best track classification is only slightly higher than that of a random classification. The JRA-55 classification achieves higher performance scores than does the ERA-Interim classification, and the differences are statistically significant in all basins. The lower performance of ERA-Interim is mainly due to a higher false alarm rate, particularly in the eastern North Pacific. Overall, the results show that while the CPS-based classifications are good enough to be useful for many purposes, there is almost certainly room for improvement-in the representation of the storms in reanalyses, in our objective metrics of ET, and in our scientific understanding of the ET process.

AB - This study analyzes the differences between an objective, automated identification of tropical cyclones (TCs) that undergo extratropical transition (ET), and the designation of ET determined subjectively by human forecasters in best track data in all basins globally. The objective identification of ET is based on the cyclone phase space (CPS), calculated from the Japanese 55-yr Reanalysis (JRA-55) or the ECMWF interim reanalysis (ERA-Interim). The resulting classification into ET storms and non-ET storms underlies the global climatology of ET presented in Part I of this study. Here, the authors investigate how well the CPS classifications agree with those in the best track records calculated from JRA-55 or from ERA-Interim data. According to F1 scores and Matthews correlation coefficients (MCCs), the classification of ET storms in the CPS agrees best with the best track classification in the western North Pacific (MCC > 0.7) and the North Atlantic (MCC > 0.5). In other basins, the correlation between the CPS classification and the best track classification is only slightly higher than that of a random classification. The JRA-55 classification achieves higher performance scores than does the ERA-Interim classification, and the differences are statistically significant in all basins. The lower performance of ERA-Interim is mainly due to a higher false alarm rate, particularly in the eastern North Pacific. Overall, the results show that while the CPS-based classifications are good enough to be useful for many purposes, there is almost certainly room for improvement-in the representation of the storms in reanalyses, in our objective metrics of ET, and in our scientific understanding of the ET process.

UR - http://www.scopus.com/inward/record.url?scp=85066451957&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85066451957&partnerID=8YFLogxK

U2 - 10.1175/JCLI-D-18-0052.1

DO - 10.1175/JCLI-D-18-0052.1

M3 - Article

AN - SCOPUS:85066451957

VL - 32

SP - 3583

EP - 3597

JO - Journal of Climate

JF - Journal of Climate

SN - 0894-8755

IS - 12

ER -