A global meta-analysis of forest bioenergy greenhouse gas emission accounting studies

Thomas Buchholz, Matthew D. Hurteau, John Gunn, David Saah

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

The potential greenhouse gas benefits of displacing fossil energy with biofuels are driving policy development in the absence of complete information. The potential carbon neutrality of forest biomass is a source of considerable scientific debate because of the complexity of dynamic forest ecosystems, varied feedstock types, and multiple energy production pathways. The lack of scientific consensus leaves decision makers struggling with contradicting technical advice. Analyzing previously published studies, our goal was to identify and prioritize those attributes of bioenergy greenhouse gas (GHG) emissions analysis that are most influential on length of carbon payback period. We investigated outcomes of 59 previously published forest biomass greenhouse gas emissions research studies published between 1991 and 2014. We identified attributes for each study and classified study cases by attributes. Using classification and regression tree analysis, we identified those attributes that are strong predictors of carbon payback period (e.g. the time required by the forest to recover through sequestration the carbon dioxide from biomass combusted for energy). The inclusion of wildfire dynamics proved to be the most influential in determining carbon payback period length compared to other factors such as feedstock type, baseline choice, and the incorporation of leakage calculations. Additionally, we demonstrate that evaluation criteria consistency is required to facilitate equitable comparison between projects. For carbon payback period calculations to provide operational insights to decision makers, future research should focus on creating common accounting principles for the most influential factors including temporal scale, natural disturbances, system boundaries, GHG emission metrics, and baselines.

Original languageEnglish (US)
Pages (from-to)281-289
Number of pages9
JournalGCB Bioenergy
Volume8
Issue number2
DOIs
StatePublished - Mar 1 2016

Fingerprint

meta-analysis
bioenergy
greenhouse gas emissions
Gas emissions
Greenhouse gases
greenhouse gas
Carbon
carbon
Biomass
feedstocks
Feedstocks
biomass
system boundary
development policy
energy
Biofuels
greenhouse gases
wildfires
policy development
biofuels

All Science Journal Classification (ASJC) codes

  • Forestry
  • Renewable Energy, Sustainability and the Environment
  • Agronomy and Crop Science
  • Waste Management and Disposal

Cite this

Buchholz, Thomas ; Hurteau, Matthew D. ; Gunn, John ; Saah, David. / A global meta-analysis of forest bioenergy greenhouse gas emission accounting studies. In: GCB Bioenergy. 2016 ; Vol. 8, No. 2. pp. 281-289.
@article{3754beb41a634720bc79fe83ac18fa61,
title = "A global meta-analysis of forest bioenergy greenhouse gas emission accounting studies",
abstract = "The potential greenhouse gas benefits of displacing fossil energy with biofuels are driving policy development in the absence of complete information. The potential carbon neutrality of forest biomass is a source of considerable scientific debate because of the complexity of dynamic forest ecosystems, varied feedstock types, and multiple energy production pathways. The lack of scientific consensus leaves decision makers struggling with contradicting technical advice. Analyzing previously published studies, our goal was to identify and prioritize those attributes of bioenergy greenhouse gas (GHG) emissions analysis that are most influential on length of carbon payback period. We investigated outcomes of 59 previously published forest biomass greenhouse gas emissions research studies published between 1991 and 2014. We identified attributes for each study and classified study cases by attributes. Using classification and regression tree analysis, we identified those attributes that are strong predictors of carbon payback period (e.g. the time required by the forest to recover through sequestration the carbon dioxide from biomass combusted for energy). The inclusion of wildfire dynamics proved to be the most influential in determining carbon payback period length compared to other factors such as feedstock type, baseline choice, and the incorporation of leakage calculations. Additionally, we demonstrate that evaluation criteria consistency is required to facilitate equitable comparison between projects. For carbon payback period calculations to provide operational insights to decision makers, future research should focus on creating common accounting principles for the most influential factors including temporal scale, natural disturbances, system boundaries, GHG emission metrics, and baselines.",
author = "Thomas Buchholz and Hurteau, {Matthew D.} and John Gunn and David Saah",
year = "2016",
month = "3",
day = "1",
doi = "10.1111/gcbb.12245",
language = "English (US)",
volume = "8",
pages = "281--289",
journal = "GCB Bioenergy",
issn = "1757-1693",
publisher = "Wiley-VCH Verlag",
number = "2",

}

A global meta-analysis of forest bioenergy greenhouse gas emission accounting studies. / Buchholz, Thomas; Hurteau, Matthew D.; Gunn, John; Saah, David.

In: GCB Bioenergy, Vol. 8, No. 2, 01.03.2016, p. 281-289.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A global meta-analysis of forest bioenergy greenhouse gas emission accounting studies

AU - Buchholz, Thomas

AU - Hurteau, Matthew D.

AU - Gunn, John

AU - Saah, David

PY - 2016/3/1

Y1 - 2016/3/1

N2 - The potential greenhouse gas benefits of displacing fossil energy with biofuels are driving policy development in the absence of complete information. The potential carbon neutrality of forest biomass is a source of considerable scientific debate because of the complexity of dynamic forest ecosystems, varied feedstock types, and multiple energy production pathways. The lack of scientific consensus leaves decision makers struggling with contradicting technical advice. Analyzing previously published studies, our goal was to identify and prioritize those attributes of bioenergy greenhouse gas (GHG) emissions analysis that are most influential on length of carbon payback period. We investigated outcomes of 59 previously published forest biomass greenhouse gas emissions research studies published between 1991 and 2014. We identified attributes for each study and classified study cases by attributes. Using classification and regression tree analysis, we identified those attributes that are strong predictors of carbon payback period (e.g. the time required by the forest to recover through sequestration the carbon dioxide from biomass combusted for energy). The inclusion of wildfire dynamics proved to be the most influential in determining carbon payback period length compared to other factors such as feedstock type, baseline choice, and the incorporation of leakage calculations. Additionally, we demonstrate that evaluation criteria consistency is required to facilitate equitable comparison between projects. For carbon payback period calculations to provide operational insights to decision makers, future research should focus on creating common accounting principles for the most influential factors including temporal scale, natural disturbances, system boundaries, GHG emission metrics, and baselines.

AB - The potential greenhouse gas benefits of displacing fossil energy with biofuels are driving policy development in the absence of complete information. The potential carbon neutrality of forest biomass is a source of considerable scientific debate because of the complexity of dynamic forest ecosystems, varied feedstock types, and multiple energy production pathways. The lack of scientific consensus leaves decision makers struggling with contradicting technical advice. Analyzing previously published studies, our goal was to identify and prioritize those attributes of bioenergy greenhouse gas (GHG) emissions analysis that are most influential on length of carbon payback period. We investigated outcomes of 59 previously published forest biomass greenhouse gas emissions research studies published between 1991 and 2014. We identified attributes for each study and classified study cases by attributes. Using classification and regression tree analysis, we identified those attributes that are strong predictors of carbon payback period (e.g. the time required by the forest to recover through sequestration the carbon dioxide from biomass combusted for energy). The inclusion of wildfire dynamics proved to be the most influential in determining carbon payback period length compared to other factors such as feedstock type, baseline choice, and the incorporation of leakage calculations. Additionally, we demonstrate that evaluation criteria consistency is required to facilitate equitable comparison between projects. For carbon payback period calculations to provide operational insights to decision makers, future research should focus on creating common accounting principles for the most influential factors including temporal scale, natural disturbances, system boundaries, GHG emission metrics, and baselines.

UR - http://www.scopus.com/inward/record.url?scp=84959544514&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84959544514&partnerID=8YFLogxK

U2 - 10.1111/gcbb.12245

DO - 10.1111/gcbb.12245

M3 - Article

AN - SCOPUS:84959544514

VL - 8

SP - 281

EP - 289

JO - GCB Bioenergy

JF - GCB Bioenergy

SN - 1757-1693

IS - 2

ER -