TY - JOUR
T1 - A hybrid hole transport layer for perovskite-based solar cells
AU - Asare, Joseph
AU - Sanni, Dahiru M.
AU - Agyei-Tuffour, Benjamin
AU - Agede, Ernest
AU - Oyewole, Oluwaseun Kehinde
AU - Yerramilli, Aditya S.
AU - Doumon, Nutifafa Y.
N1 - Funding Information:
This project was funded by the BANGA-Africa programme, University of Ghana with funding from the Carnegie Corporation of New York.
Funding Information:
Acknowledgments: The authors acknowledge Terry Alford for providing the laboratory space and collaborative technical assistance. The Macro Technology Works, Engineering Research Center, and the LeRoy Eyring Center for Solid State Science at Arizona State University, Tempe, USA are also appreciated for their useful technical support. J. Asare and D. Sanni also acknowledge the support of the Pan African Materials Institute (PAMI) of the African University of Science and Technology (AUST), Abuja, Nigeria.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/4/1
Y1 - 2021/4/1
N2 - This paper presents the effect of a composite poly(3,4-ethylenedioxythiophene) polystyrene sulfonate PEDOT:PSS and copper-doped nickel oxide (Cu:NiOx) hole transport layer (HTL) on the performance of perovskite solar cells (PSCs). Thin films of Cu:NiOx were spin-coated onto fluorinedoped tin oxide (FTO) glass substrates using a blend of nickel acetate tetrahydrate, 2-methoxyethanol and monoethanolamine (MEA) and copper acetate monohydrate. The prepared solution was stirred at 65◦C for 4 h and spin-coated onto the FTO substrates at 3000 rpm for 30 s in a nitrogen glovebox. The Cu:NiOx/FTO/glass structure was then annealed in air at 400◦C for 30 min. A mixture of PEDOT:PSS and isopropyl alcohol (IPA) (in 1:0.05 wt%) was spun onto the Cu:NiOx/FTO/glass substrate at 4000 rpm for 60 s. The multilayer structure was annealed at 130◦C for 15 min. Subsequently, the perovskite precursor (0.95 M) of methylammonium iodide (MAI) to lead acetate trihydrate (Pb(OAc)2·3H2O) was spin-coated at 4000 rpm for 200 s and thermally annealed at 80◦C for 12 min. The inverted planar perovskite solar cells were then fabricated by the deposition of a photoactive layer (CH3NH3PbI3), [6,6]-phenyl C61-butyric acid methyl ester (PCBM), and a Ag electrode. The mechanical behavior of the device during the fabrication of the Cu:NiOx HTL was modeled with finite element simulations using Abaqus/Complete Abaqus Environment CAE. The results show that incorporating Cu:NiOx into the PSC device improves its density–voltage (J–V) behavior, giving an enhanced photoconversion efficiency (PCE) of ~12.8% from ~9.8% and ~11.5% when PEDOT:PSS-only and Cu:NiOx-only are fabricated, respectively. The short circuit current density Jsc for the 0.1 M Cu:NiOx and 0.2 M Cu:NiOx-based devices increased by 18% and 9%, respectively, due to the increase in the electrical conductivity of the Cu:NiOx which provides room for more charges to be extracted out of the absorber layer. The increases in the PCEs were due to the copper-doped nickel oxide blend with the PEDOT:PSS which enhanced the exciton density and charge transport efficiency leading to higher electrical conductivity. The results indicate that the devices with the copper-doped nickel oxide hole transport layer (HTL) are slower to degrade compared with the PEDOT:PSS-only-based HTL. The finite element analyses show that the Cu:NiOx layer would not extensively deform the device, leading to improved stability and enhanced performance. The implications of the results are discussed for the design of low-temperature solution-processed PSCs with copper-doped nickel oxide composite HTLs.
AB - This paper presents the effect of a composite poly(3,4-ethylenedioxythiophene) polystyrene sulfonate PEDOT:PSS and copper-doped nickel oxide (Cu:NiOx) hole transport layer (HTL) on the performance of perovskite solar cells (PSCs). Thin films of Cu:NiOx were spin-coated onto fluorinedoped tin oxide (FTO) glass substrates using a blend of nickel acetate tetrahydrate, 2-methoxyethanol and monoethanolamine (MEA) and copper acetate monohydrate. The prepared solution was stirred at 65◦C for 4 h and spin-coated onto the FTO substrates at 3000 rpm for 30 s in a nitrogen glovebox. The Cu:NiOx/FTO/glass structure was then annealed in air at 400◦C for 30 min. A mixture of PEDOT:PSS and isopropyl alcohol (IPA) (in 1:0.05 wt%) was spun onto the Cu:NiOx/FTO/glass substrate at 4000 rpm for 60 s. The multilayer structure was annealed at 130◦C for 15 min. Subsequently, the perovskite precursor (0.95 M) of methylammonium iodide (MAI) to lead acetate trihydrate (Pb(OAc)2·3H2O) was spin-coated at 4000 rpm for 200 s and thermally annealed at 80◦C for 12 min. The inverted planar perovskite solar cells were then fabricated by the deposition of a photoactive layer (CH3NH3PbI3), [6,6]-phenyl C61-butyric acid methyl ester (PCBM), and a Ag electrode. The mechanical behavior of the device during the fabrication of the Cu:NiOx HTL was modeled with finite element simulations using Abaqus/Complete Abaqus Environment CAE. The results show that incorporating Cu:NiOx into the PSC device improves its density–voltage (J–V) behavior, giving an enhanced photoconversion efficiency (PCE) of ~12.8% from ~9.8% and ~11.5% when PEDOT:PSS-only and Cu:NiOx-only are fabricated, respectively. The short circuit current density Jsc for the 0.1 M Cu:NiOx and 0.2 M Cu:NiOx-based devices increased by 18% and 9%, respectively, due to the increase in the electrical conductivity of the Cu:NiOx which provides room for more charges to be extracted out of the absorber layer. The increases in the PCEs were due to the copper-doped nickel oxide blend with the PEDOT:PSS which enhanced the exciton density and charge transport efficiency leading to higher electrical conductivity. The results indicate that the devices with the copper-doped nickel oxide hole transport layer (HTL) are slower to degrade compared with the PEDOT:PSS-only-based HTL. The finite element analyses show that the Cu:NiOx layer would not extensively deform the device, leading to improved stability and enhanced performance. The implications of the results are discussed for the design of low-temperature solution-processed PSCs with copper-doped nickel oxide composite HTLs.
UR - http://www.scopus.com/inward/record.url?scp=85106484096&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85106484096&partnerID=8YFLogxK
U2 - 10.3390/en14071949
DO - 10.3390/en14071949
M3 - Article
AN - SCOPUS:85106484096
SN - 1996-1073
VL - 14
JO - Energies
JF - Energies
IS - 7
M1 - 1949
ER -