A hydrogel-based droplet interface lipid bilayer network

Alex Edgerton, Joseph Najem, Donald Leo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work, we present a process for the fabrication of meso-scale hydrogel-based lipid bilayer arrays. The hydrogels support lipid monolayers at an oil-water interface, and when brought together, form stable bilayers. The substrates are formed using 3D printed molds and include built-in, customizable circuits patterned with silver paint. The system can be adapted to varying network sizes and circuit designs, and new arrays are fabricated quickly and inexpensively using common laboratory techniques. An enclosed 3x3 array with 3 mm spacing between neighboring hydrogels and electrodes to individually examine each bilayer has been created using this method. An alternative test setup was also developed to better observe the formation of bilayers in a small array. Using this setup, two bilayers were formed simultaneously, demonstrating the feasibility of this type of system and providing valuable information for expanding and improving the enclosed network. Many of the design concepts presented here can be adapted for use at smaller scales using microfabrication techniques.

Original languageEnglish (US)
Title of host publicationASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
ISBN (Electronic)9780791846155
DOIs
StatePublished - Jan 1 2014
EventASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 - Newport, United States
Duration: Sep 8 2014Sep 10 2014

Publication series

NameASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
Volume2

Other

OtherASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
CountryUnited States
CityNewport
Period9/8/149/10/14

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Civil and Structural Engineering

Fingerprint Dive into the research topics of 'A hydrogel-based droplet interface lipid bilayer network'. Together they form a unique fingerprint.

  • Cite this

    Edgerton, A., Najem, J., & Leo, D. (2014). A hydrogel-based droplet interface lipid bilayer network. In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 (ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014; Vol. 2). Web Portal ASME (American Society of Mechanical Engineers). https://doi.org/10.1115/SMASIS20147580