A microbial fluidized electrode electrolysis cell (MFEEC) for enhanced hydrogen production

Jia Liu, Fang Zhang, Weihua He, Wulin Yang, Yujie Feng, Bruce E. Logan

Research output: Contribution to journalArticle

22 Scopus citations

Abstract

A microbial fluidized electrode electrolysis cell (MFEEC) was used to enhance hydrogen gas production from dissolved organic matter. Flowable granular activated carbon (GAC) particles were used to provide additional surface area for growth of exoelectrogenic bacteria. The use of this exoelectrogenic biofilm on the GAC particles with fluidization produced higher current densities and hydrogen gas recoveries than controls (no recirculation or no GAC), due to intermittent contact of the capacitive particles with the anode. The total cumulative charge of 1688C m-2 with the MFEEC reactor (a recirculation flow rate of 19 mL min-1) was 20% higher than that of the control reactor (no GAC). The highest hydrogen gas yield of 0.82 ± 0.01 mol-H2/mol-acetate (17 mL min-1) was 39% higher than that obtained without recirculation (0.59 ± 0.01 mol-H 2/mol-acetate), and 116% higher than that of the control (no GAC, without recirculation). These results show that flowable GAC particles provide a useful approach for enhancing hydrogen gas production in bioelectrochemical systems.

Original languageEnglish (US)
Pages (from-to)530-533
Number of pages4
JournalJournal of Power Sources
Volume271
DOIs
StatePublished - Dec 20 2014

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Cite this