A Molecular Rotor-Based Halo-Tag Ligand Enables a Fluorogenic Proteome Stress Sensor to Detect Protein Misfolding in Mildly Stressed Proteome

Matthew Fares, Yinghao Li, Yu Liu, Kun Miao, Zi Gao, Yufeng Zhai, Xin Zhang

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Cellular stress leads to disruption of protein homeostasis (proteostasis) that is associated with global misfolding and aggregation of the endogenous proteome. Monitoring stress-induced proteostasis deficiency remains one of the major technical challenges facing established sensors of this process. Available sensors use solvatochromic fluorophores to detect protein aggregation in forms of soluble oligomers or insoluble aggregates when cells are subjected to severe stress conditions. Misfolded monomers induced by mild stresses, however, remain largely invisible to these sensors. Here, we describe a fluorogenic proteome stress sensor by conjugating a fluorescent molecular rotor with a metastable Halo-tag protein domain that contains a K73T mutation (named AgHalo hereinafter). In nonstressed cells, the AaHalo sensor remains largely folded and the AgHalo•ligand conjugate is fluorescent dark in the folded state. Under various stress conditions, the AgHalo sensor has been established to form both soluble and insoluble aggregates along with metastable proteins of the endogenous cellular proteome. Thus, the AgHalo•ligand conjugate fluoresces strongly when the sensor forms misfolded monomers (a 16-fold increase) or aggregates in both soluble and insoluble forms (a 20-fold increase). Compared to the solvatochromic fluorophore-based sensor, we demonstrate that the molecular rotor-based sensor not only is more effective in detecting mild proteome stress that induces primarily misfolding conformations, but also exhibits a higher fluorescence signal in detecting more severe proteome stress that involves protein aggregates. Thus, the conjugation of a fluorescent molecular rotor to AgHalo further improves the capacity of this sensor to detect conditions of proteome stress. This work highlights the utility of molecular rotor-based fluorophores in direct visualization of the protein aggregation cascade in live cells, providing new methodologies for real-time analyses of cellular proteostasis upon exposure to different types of stress conditions.

Original languageEnglish (US)
Pages (from-to)215-224
Number of pages10
JournalBioconjugate Chemistry
Volume29
Issue number1
DOIs
StatePublished - Jan 17 2018

Fingerprint

Proteome
Rotors
Ligands
Proteins
Sensors
Homeostasis
Fluorophores
Heat-Shock Proteins
Agglomeration
Protein Deficiency
Monomers
Fluorescence
Mutation
Oligomers
Conformations
Visualization
Monitoring

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Cite this

Fares, Matthew ; Li, Yinghao ; Liu, Yu ; Miao, Kun ; Gao, Zi ; Zhai, Yufeng ; Zhang, Xin. / A Molecular Rotor-Based Halo-Tag Ligand Enables a Fluorogenic Proteome Stress Sensor to Detect Protein Misfolding in Mildly Stressed Proteome. In: Bioconjugate Chemistry. 2018 ; Vol. 29, No. 1. pp. 215-224.
@article{4f874ab5e5f141fcba1857b917764af0,
title = "A Molecular Rotor-Based Halo-Tag Ligand Enables a Fluorogenic Proteome Stress Sensor to Detect Protein Misfolding in Mildly Stressed Proteome",
abstract = "Cellular stress leads to disruption of protein homeostasis (proteostasis) that is associated with global misfolding and aggregation of the endogenous proteome. Monitoring stress-induced proteostasis deficiency remains one of the major technical challenges facing established sensors of this process. Available sensors use solvatochromic fluorophores to detect protein aggregation in forms of soluble oligomers or insoluble aggregates when cells are subjected to severe stress conditions. Misfolded monomers induced by mild stresses, however, remain largely invisible to these sensors. Here, we describe a fluorogenic proteome stress sensor by conjugating a fluorescent molecular rotor with a metastable Halo-tag protein domain that contains a K73T mutation (named AgHalo hereinafter). In nonstressed cells, the AaHalo sensor remains largely folded and the AgHalo•ligand conjugate is fluorescent dark in the folded state. Under various stress conditions, the AgHalo sensor has been established to form both soluble and insoluble aggregates along with metastable proteins of the endogenous cellular proteome. Thus, the AgHalo•ligand conjugate fluoresces strongly when the sensor forms misfolded monomers (a 16-fold increase) or aggregates in both soluble and insoluble forms (a 20-fold increase). Compared to the solvatochromic fluorophore-based sensor, we demonstrate that the molecular rotor-based sensor not only is more effective in detecting mild proteome stress that induces primarily misfolding conformations, but also exhibits a higher fluorescence signal in detecting more severe proteome stress that involves protein aggregates. Thus, the conjugation of a fluorescent molecular rotor to AgHalo further improves the capacity of this sensor to detect conditions of proteome stress. This work highlights the utility of molecular rotor-based fluorophores in direct visualization of the protein aggregation cascade in live cells, providing new methodologies for real-time analyses of cellular proteostasis upon exposure to different types of stress conditions.",
author = "Matthew Fares and Yinghao Li and Yu Liu and Kun Miao and Zi Gao and Yufeng Zhai and Xin Zhang",
year = "2018",
month = "1",
day = "17",
doi = "10.1021/acs.bioconjchem.7b00763",
language = "English (US)",
volume = "29",
pages = "215--224",
journal = "Bioconjugate Chemistry",
issn = "1043-1802",
publisher = "American Chemical Society",
number = "1",

}

A Molecular Rotor-Based Halo-Tag Ligand Enables a Fluorogenic Proteome Stress Sensor to Detect Protein Misfolding in Mildly Stressed Proteome. / Fares, Matthew; Li, Yinghao; Liu, Yu; Miao, Kun; Gao, Zi; Zhai, Yufeng; Zhang, Xin.

In: Bioconjugate Chemistry, Vol. 29, No. 1, 17.01.2018, p. 215-224.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A Molecular Rotor-Based Halo-Tag Ligand Enables a Fluorogenic Proteome Stress Sensor to Detect Protein Misfolding in Mildly Stressed Proteome

AU - Fares, Matthew

AU - Li, Yinghao

AU - Liu, Yu

AU - Miao, Kun

AU - Gao, Zi

AU - Zhai, Yufeng

AU - Zhang, Xin

PY - 2018/1/17

Y1 - 2018/1/17

N2 - Cellular stress leads to disruption of protein homeostasis (proteostasis) that is associated with global misfolding and aggregation of the endogenous proteome. Monitoring stress-induced proteostasis deficiency remains one of the major technical challenges facing established sensors of this process. Available sensors use solvatochromic fluorophores to detect protein aggregation in forms of soluble oligomers or insoluble aggregates when cells are subjected to severe stress conditions. Misfolded monomers induced by mild stresses, however, remain largely invisible to these sensors. Here, we describe a fluorogenic proteome stress sensor by conjugating a fluorescent molecular rotor with a metastable Halo-tag protein domain that contains a K73T mutation (named AgHalo hereinafter). In nonstressed cells, the AaHalo sensor remains largely folded and the AgHalo•ligand conjugate is fluorescent dark in the folded state. Under various stress conditions, the AgHalo sensor has been established to form both soluble and insoluble aggregates along with metastable proteins of the endogenous cellular proteome. Thus, the AgHalo•ligand conjugate fluoresces strongly when the sensor forms misfolded monomers (a 16-fold increase) or aggregates in both soluble and insoluble forms (a 20-fold increase). Compared to the solvatochromic fluorophore-based sensor, we demonstrate that the molecular rotor-based sensor not only is more effective in detecting mild proteome stress that induces primarily misfolding conformations, but also exhibits a higher fluorescence signal in detecting more severe proteome stress that involves protein aggregates. Thus, the conjugation of a fluorescent molecular rotor to AgHalo further improves the capacity of this sensor to detect conditions of proteome stress. This work highlights the utility of molecular rotor-based fluorophores in direct visualization of the protein aggregation cascade in live cells, providing new methodologies for real-time analyses of cellular proteostasis upon exposure to different types of stress conditions.

AB - Cellular stress leads to disruption of protein homeostasis (proteostasis) that is associated with global misfolding and aggregation of the endogenous proteome. Monitoring stress-induced proteostasis deficiency remains one of the major technical challenges facing established sensors of this process. Available sensors use solvatochromic fluorophores to detect protein aggregation in forms of soluble oligomers or insoluble aggregates when cells are subjected to severe stress conditions. Misfolded monomers induced by mild stresses, however, remain largely invisible to these sensors. Here, we describe a fluorogenic proteome stress sensor by conjugating a fluorescent molecular rotor with a metastable Halo-tag protein domain that contains a K73T mutation (named AgHalo hereinafter). In nonstressed cells, the AaHalo sensor remains largely folded and the AgHalo•ligand conjugate is fluorescent dark in the folded state. Under various stress conditions, the AgHalo sensor has been established to form both soluble and insoluble aggregates along with metastable proteins of the endogenous cellular proteome. Thus, the AgHalo•ligand conjugate fluoresces strongly when the sensor forms misfolded monomers (a 16-fold increase) or aggregates in both soluble and insoluble forms (a 20-fold increase). Compared to the solvatochromic fluorophore-based sensor, we demonstrate that the molecular rotor-based sensor not only is more effective in detecting mild proteome stress that induces primarily misfolding conformations, but also exhibits a higher fluorescence signal in detecting more severe proteome stress that involves protein aggregates. Thus, the conjugation of a fluorescent molecular rotor to AgHalo further improves the capacity of this sensor to detect conditions of proteome stress. This work highlights the utility of molecular rotor-based fluorophores in direct visualization of the protein aggregation cascade in live cells, providing new methodologies for real-time analyses of cellular proteostasis upon exposure to different types of stress conditions.

UR - http://www.scopus.com/inward/record.url?scp=85040670783&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85040670783&partnerID=8YFLogxK

U2 - 10.1021/acs.bioconjchem.7b00763

DO - 10.1021/acs.bioconjchem.7b00763

M3 - Article

C2 - 29251907

AN - SCOPUS:85040670783

VL - 29

SP - 215

EP - 224

JO - Bioconjugate Chemistry

JF - Bioconjugate Chemistry

SN - 1043-1802

IS - 1

ER -