A multiplicative-epistatic model for analyzing interspecific differences in outcrossing species

Rongling Wu, Bailian Li

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

Epistasis may play an important role in evolution and speciation. Under multiplicative interactions between different loci, an analytical model is proposed to estimate genetic parameters at the individual locus level that contribute to interspecific differences in outcrossing species. The multiplicative epistasis model, inferred from a number of animal and plant experiments, suggests that genotypes at a pair of loci have genotypic values equal to the product of genotypic values at the two different loci. By considering the genetic property of outcrossing species (i.e., high polymorphisms) in the multilevel family structure analysis for an intra- and interspecific factorial mating design, a method is developed to provide estimates for allele frequencies and additive and dominant effects at individual loci in each of the two parental populations, the genotypic values of newly formed heterozygotes through species combination each with one allele from a parental population and the second from the other parental population, and the numbers of genetic factors that lead to species differentiation. Use of clones offers a tremendous power to test the adequacy of the model. However, the utilization of the model with species that cannot be cloned is also discussed. An example with interspecific hybrids of two forest tree species is used to demonstrate the model.

Original languageEnglish (US)
Pages (from-to)355-365
Number of pages11
JournalBiometrics
Volume55
Issue number2
DOIs
StatePublished - Jun 1999

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'A multiplicative-epistatic model for analyzing interspecific differences in outcrossing species'. Together they form a unique fingerprint.

Cite this