A Mutant of DNA Polymerase I (Klenow Fragment) with Reduced Fidelity

Steven S. Carroll, Marlon Cowart, Stephen Benkovic

Research output: Contribution to journalArticle

112 Citations (Scopus)

Abstract

The kinetic parameters governing incorporation of correct and incorrect bases into synthetic DNA duplexes have been investigated for Escherichia coli DNA polymerase I [Klenow fragment (KF)] and for two mutants, Tyr766Ser and Tyr766Phe. Tyr766 is located at the C-terminus of helix O in the DNA-binding cleft of KF. The catalytic efficiency for correct incorporation of dNTP is reduced 5-fold for Tyr766Ser. The catalytic efficiencies of all 12 possible misincorporations have been determined for both KF and Tyr766Ser by using single-turnover kinetic conditions and a form of the enzyme that is devoid of the 3′-5′ exonuclease activity because of other single amino acid replacements. Tyr766Ser displays an increased efficiency of misincorporation (a reduction in fidelity) for several of the 12 mismatches. The largest increase in efficiency of misincorporation for Tyr766Ser occurs for the misincorporation of TMP opposite template guanosine, a 44-fold increase. In contrast, the efficiencies of misincorporation of dAMP opposite template A, G, or C are little affected by the mutation. A determination of the kinetic parameters associated with a complete kinetic scheme has been made for Tyr766Ser. The rate of addition of the next correct nucleotide onto a preexisting mismatch is decreased for Tyr766Ser. The fidelity of Tyr766Phe was not substantially different from that of KF for the misincorporations examined, indicating that it is the loss of the phenolic ring of the side chain of Tyr766 that leads to the significant decrease in fidelity. The results indicate that KF actively participates in the reduction of misincorporations during the polymerization event and that Tyr766 plays an important role in maintaining the high fidelity of replication by KF.

Original languageEnglish (US)
Pages (from-to)804-813
Number of pages10
JournalBiochemistry
Volume30
Issue number3
DOIs
StatePublished - Jan 1 1991

Fingerprint

DNA Polymerase I
Kinetic parameters
Thymidine Monophosphate
Exonucleases
Kinetics
Guanosine
DNA
Polymerization
Escherichia coli
Nucleotides
Amino Acids
Mutation
Enzymes

All Science Journal Classification (ASJC) codes

  • Biochemistry

Cite this

Carroll, Steven S. ; Cowart, Marlon ; Benkovic, Stephen. / A Mutant of DNA Polymerase I (Klenow Fragment) with Reduced Fidelity. In: Biochemistry. 1991 ; Vol. 30, No. 3. pp. 804-813.
@article{73fb5f897bb84865887185a6a0f6a729,
title = "A Mutant of DNA Polymerase I (Klenow Fragment) with Reduced Fidelity",
abstract = "The kinetic parameters governing incorporation of correct and incorrect bases into synthetic DNA duplexes have been investigated for Escherichia coli DNA polymerase I [Klenow fragment (KF)] and for two mutants, Tyr766Ser and Tyr766Phe. Tyr766 is located at the C-terminus of helix O in the DNA-binding cleft of KF. The catalytic efficiency for correct incorporation of dNTP is reduced 5-fold for Tyr766Ser. The catalytic efficiencies of all 12 possible misincorporations have been determined for both KF and Tyr766Ser by using single-turnover kinetic conditions and a form of the enzyme that is devoid of the 3′-5′ exonuclease activity because of other single amino acid replacements. Tyr766Ser displays an increased efficiency of misincorporation (a reduction in fidelity) for several of the 12 mismatches. The largest increase in efficiency of misincorporation for Tyr766Ser occurs for the misincorporation of TMP opposite template guanosine, a 44-fold increase. In contrast, the efficiencies of misincorporation of dAMP opposite template A, G, or C are little affected by the mutation. A determination of the kinetic parameters associated with a complete kinetic scheme has been made for Tyr766Ser. The rate of addition of the next correct nucleotide onto a preexisting mismatch is decreased for Tyr766Ser. The fidelity of Tyr766Phe was not substantially different from that of KF for the misincorporations examined, indicating that it is the loss of the phenolic ring of the side chain of Tyr766 that leads to the significant decrease in fidelity. The results indicate that KF actively participates in the reduction of misincorporations during the polymerization event and that Tyr766 plays an important role in maintaining the high fidelity of replication by KF.",
author = "Carroll, {Steven S.} and Marlon Cowart and Stephen Benkovic",
year = "1991",
month = "1",
day = "1",
doi = "10.1021/bi00217a034",
language = "English (US)",
volume = "30",
pages = "804--813",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "3",

}

Carroll, SS, Cowart, M & Benkovic, S 1991, 'A Mutant of DNA Polymerase I (Klenow Fragment) with Reduced Fidelity', Biochemistry, vol. 30, no. 3, pp. 804-813. https://doi.org/10.1021/bi00217a034

A Mutant of DNA Polymerase I (Klenow Fragment) with Reduced Fidelity. / Carroll, Steven S.; Cowart, Marlon; Benkovic, Stephen.

In: Biochemistry, Vol. 30, No. 3, 01.01.1991, p. 804-813.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A Mutant of DNA Polymerase I (Klenow Fragment) with Reduced Fidelity

AU - Carroll, Steven S.

AU - Cowart, Marlon

AU - Benkovic, Stephen

PY - 1991/1/1

Y1 - 1991/1/1

N2 - The kinetic parameters governing incorporation of correct and incorrect bases into synthetic DNA duplexes have been investigated for Escherichia coli DNA polymerase I [Klenow fragment (KF)] and for two mutants, Tyr766Ser and Tyr766Phe. Tyr766 is located at the C-terminus of helix O in the DNA-binding cleft of KF. The catalytic efficiency for correct incorporation of dNTP is reduced 5-fold for Tyr766Ser. The catalytic efficiencies of all 12 possible misincorporations have been determined for both KF and Tyr766Ser by using single-turnover kinetic conditions and a form of the enzyme that is devoid of the 3′-5′ exonuclease activity because of other single amino acid replacements. Tyr766Ser displays an increased efficiency of misincorporation (a reduction in fidelity) for several of the 12 mismatches. The largest increase in efficiency of misincorporation for Tyr766Ser occurs for the misincorporation of TMP opposite template guanosine, a 44-fold increase. In contrast, the efficiencies of misincorporation of dAMP opposite template A, G, or C are little affected by the mutation. A determination of the kinetic parameters associated with a complete kinetic scheme has been made for Tyr766Ser. The rate of addition of the next correct nucleotide onto a preexisting mismatch is decreased for Tyr766Ser. The fidelity of Tyr766Phe was not substantially different from that of KF for the misincorporations examined, indicating that it is the loss of the phenolic ring of the side chain of Tyr766 that leads to the significant decrease in fidelity. The results indicate that KF actively participates in the reduction of misincorporations during the polymerization event and that Tyr766 plays an important role in maintaining the high fidelity of replication by KF.

AB - The kinetic parameters governing incorporation of correct and incorrect bases into synthetic DNA duplexes have been investigated for Escherichia coli DNA polymerase I [Klenow fragment (KF)] and for two mutants, Tyr766Ser and Tyr766Phe. Tyr766 is located at the C-terminus of helix O in the DNA-binding cleft of KF. The catalytic efficiency for correct incorporation of dNTP is reduced 5-fold for Tyr766Ser. The catalytic efficiencies of all 12 possible misincorporations have been determined for both KF and Tyr766Ser by using single-turnover kinetic conditions and a form of the enzyme that is devoid of the 3′-5′ exonuclease activity because of other single amino acid replacements. Tyr766Ser displays an increased efficiency of misincorporation (a reduction in fidelity) for several of the 12 mismatches. The largest increase in efficiency of misincorporation for Tyr766Ser occurs for the misincorporation of TMP opposite template guanosine, a 44-fold increase. In contrast, the efficiencies of misincorporation of dAMP opposite template A, G, or C are little affected by the mutation. A determination of the kinetic parameters associated with a complete kinetic scheme has been made for Tyr766Ser. The rate of addition of the next correct nucleotide onto a preexisting mismatch is decreased for Tyr766Ser. The fidelity of Tyr766Phe was not substantially different from that of KF for the misincorporations examined, indicating that it is the loss of the phenolic ring of the side chain of Tyr766 that leads to the significant decrease in fidelity. The results indicate that KF actively participates in the reduction of misincorporations during the polymerization event and that Tyr766 plays an important role in maintaining the high fidelity of replication by KF.

UR - http://www.scopus.com/inward/record.url?scp=0026029379&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026029379&partnerID=8YFLogxK

U2 - 10.1021/bi00217a034

DO - 10.1021/bi00217a034

M3 - Article

C2 - 1899034

AN - SCOPUS:0026029379

VL - 30

SP - 804

EP - 813

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 3

ER -