Abstract
We demonstrate that a new technique, near-zero field magnetoresistance (NZFMR) spectroscopy, can explore radiation damage in a wide variety of devices in a proof-of-concept study. The technique has great potential for the study of atomic-scale mechanisms of radiation damage in 3-D integrated circuits. In our study, we explore radiation damage in structures relevant to 3-D integrated circuits, but not on 3-D test structures themselves. Five structures of great technological importance to 3-D integrated circuits are investigated. We utilize both NZFMR and electrically detected magnetic resonance to investigate radiation effects in these structures. The structures involved in this paper are planar silicon metal-oxide-semiconductor field-effect transistors, silicon-germanium alloy-based transistors, fin-based transistors, silicon dioxide-based flowable oxides, and low-k dielectrics. Our study indicates that NZFMR has great potential in radiation damage studies, with exceptional promise in systems in which more conventional resonance is not possible.
Original language | English (US) |
---|---|
Article number | 8565893 |
Pages (from-to) | 428-436 |
Number of pages | 9 |
Journal | IEEE Transactions on Nuclear Science |
Volume | 66 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2019 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Nuclear Energy and Engineering
- Electrical and Electronic Engineering