A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses

Research output: Contribution to journalArticle

6 Scopus citations


A new poly[bis(octafluoropentoxy) phosphazene] (OFP) was synthesized for the purpose of blood contacting medical devices. OFP was further either developed into crosslinkable polyphosphazene (X-OFP) or blended with polyurethane (PU) as the mixture (OFP/PU) for improvement of mechanical property of polyphosphazene polymers. All the materials were fabricated as smooth films or further textured with submicron pillars for the assay of antimicrobial and antithrombotic properties. Results showed that crosslinkable OFP (X-OFP) and blends of OFP/PU successfully improved the mechanical strength of OFP and fewer defects of pillars were found on the textured polyphosphazene surfaces. The antithrombotic experiments showed that polyphosphazene OFP materials reduced human Factor XII activation and platelet adhesion, thereby being resistant to plasma coagulation and thrombosis. The bacterial adhesion and biofilm experiments demonstrated that OFP materials inhibited staphylococcal bacterial adhesion and biofilm formation. The surface texturing further reduced the platelet adhesion and bacterial adhesion, and inhibited biofilm formation up to 23 days. The data suggested that textured OFP materials may provide a practical approach to improve the biocompatibility of current biomaterials in the application of blood contacting medical devices with significant reduction in risk of pathogenic infection and thrombosis. Statement of Significance: The thromboembolic events and microbial infection have been the significant barriers for the long term use of biomaterials in blood-contacting medical devices. The development of new materials with multiple functions including anti-thrombosis and antibacterial surfaces is a high research priority. This study synthesized new biostable and biocompatible polyphosphazene polymers, poly[bis(octafluoropentoxy)phosphazene] (OFP) and crosslinkable OFP, and successfully improved the mechanical strength of polyphosphazenes. Polymers were fabricated into textured films with submicron pillars on the surfaces. The antimicrobial and antithrombotic assays demonstrated that new materials combined with surface physical modification have significant reduction in risk of pathogenic infection and thrombosis, and improve the biocompatibility of current biomaterials in the application of blood-contacting medical devices. It would be interest to biomaterials and bioengineering related communities.

Original languageEnglish (US)
Pages (from-to)87-98
Number of pages12
JournalActa Biomaterialia
StatePublished - Feb 2018


All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology

Cite this