A non-asymptotic achievable rate for the AWGN energy-harvesting channel using save-and-transmit

Silas L. Fong, Vincent Y.F. Tan, Jing Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This paper investigates the information-theoretic limits of the additive white Gaussian noise (AWGN) energy-harvesting (EH) channel in the finite blocklength regime. The EH process is characterized by a sequence of i.i.d. random variables with finite variances. We use the save-and-transmit strategy proposed by Ozel and Ulukus (2012) together with Shannon's non-asymptotic achievability bound to obtain a lower bound on the achievable rate for the AWGN EH channel. The first-order term of the lower bound on the achievable rate is equal to C and the second-order (backoff from capacity) term is proportional to equation, where n denotes the blocklength and C denotes the capacity of the EH channel, which is the same as the capacity without the EH constraints. The constant of proportionality of the backoff term is found and qualitative interpretations are provided.

Original languageEnglish (US)
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages455-459
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - Aug 10 2016
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: Jul 10 2016Jul 15 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August
ISSN (Print)2157-8095

Other

Other2016 IEEE International Symposium on Information Theory, ISIT 2016
CountrySpain
CityBarcelona
Period7/10/167/15/16

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint Dive into the research topics of 'A non-asymptotic achievable rate for the AWGN energy-harvesting channel using save-and-transmit'. Together they form a unique fingerprint.

Cite this