A note on bideterminants for Schur superalgebras

Frantisek Marko, Alexandr N. Zubkov

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Let S(m|n,r)Z be a Z-form of a Schur superalgebra S(m|n,r) generated by elements ξi,j. We solve a problem of Muir and describe a Z-form of a simple S(m|n,r)-module Dλ,Q over the field Q of rational numbers, under the action of S(m|n,r)Z. This Z-form is the Z-span of modified bideterminants [Tℓ:Ti] defined in this work. We also prove that each [Tℓ:Ti] is a Z-linear combination of modified bideterminants corresponding to (m|n)-semistandard tableaux Ti.

Original languageEnglish (US)
Pages (from-to)2223-2230
Number of pages8
JournalJournal of Pure and Applied Algebra
Volume215
Issue number9
DOIs
StatePublished - Sep 1 2011

Fingerprint

Superalgebra
D-module
Tableaux
Linear Combination
Form

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cite this

Marko, Frantisek ; Zubkov, Alexandr N. / A note on bideterminants for Schur superalgebras. In: Journal of Pure and Applied Algebra. 2011 ; Vol. 215, No. 9. pp. 2223-2230.
@article{e7b74682110f424cba3122f5f8c69da0,
title = "A note on bideterminants for Schur superalgebras",
abstract = "Let S(m|n,r)Z be a Z-form of a Schur superalgebra S(m|n,r) generated by elements ξi,j. We solve a problem of Muir and describe a Z-form of a simple S(m|n,r)-module Dλ,Q over the field Q of rational numbers, under the action of S(m|n,r)Z. This Z-form is the Z-span of modified bideterminants [Tℓ:Ti] defined in this work. We also prove that each [Tℓ:Ti] is a Z-linear combination of modified bideterminants corresponding to (m|n)-semistandard tableaux Ti.",
author = "Frantisek Marko and Zubkov, {Alexandr N.}",
year = "2011",
month = "9",
day = "1",
doi = "10.1016/j.jpaa.2011.02.003",
language = "English (US)",
volume = "215",
pages = "2223--2230",
journal = "Journal of Pure and Applied Algebra",
issn = "0022-4049",
publisher = "Elsevier",
number = "9",

}

A note on bideterminants for Schur superalgebras. / Marko, Frantisek; Zubkov, Alexandr N.

In: Journal of Pure and Applied Algebra, Vol. 215, No. 9, 01.09.2011, p. 2223-2230.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A note on bideterminants for Schur superalgebras

AU - Marko, Frantisek

AU - Zubkov, Alexandr N.

PY - 2011/9/1

Y1 - 2011/9/1

N2 - Let S(m|n,r)Z be a Z-form of a Schur superalgebra S(m|n,r) generated by elements ξi,j. We solve a problem of Muir and describe a Z-form of a simple S(m|n,r)-module Dλ,Q over the field Q of rational numbers, under the action of S(m|n,r)Z. This Z-form is the Z-span of modified bideterminants [Tℓ:Ti] defined in this work. We also prove that each [Tℓ:Ti] is a Z-linear combination of modified bideterminants corresponding to (m|n)-semistandard tableaux Ti.

AB - Let S(m|n,r)Z be a Z-form of a Schur superalgebra S(m|n,r) generated by elements ξi,j. We solve a problem of Muir and describe a Z-form of a simple S(m|n,r)-module Dλ,Q over the field Q of rational numbers, under the action of S(m|n,r)Z. This Z-form is the Z-span of modified bideterminants [Tℓ:Ti] defined in this work. We also prove that each [Tℓ:Ti] is a Z-linear combination of modified bideterminants corresponding to (m|n)-semistandard tableaux Ti.

UR - http://www.scopus.com/inward/record.url?scp=79953715626&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79953715626&partnerID=8YFLogxK

U2 - 10.1016/j.jpaa.2011.02.003

DO - 10.1016/j.jpaa.2011.02.003

M3 - Article

AN - SCOPUS:79953715626

VL - 215

SP - 2223

EP - 2230

JO - Journal of Pure and Applied Algebra

JF - Journal of Pure and Applied Algebra

SN - 0022-4049

IS - 9

ER -