A novel phase-corrected 3D cine ultra-short te (UTE) phase-contrast MRI technique

Mo Kadbi, Hui Wang, Mj Negahdar, Lizette Warner, Melanie Traughber, Peter Martin, Amir A. Amini

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Phase-contrast (PC) MRI is a non-invasive technique to assess cardiovascular blood flow. However, this technique is not accurate for instance at the carotid bifurcation due to turbulent and disturbed blood flow in atherosclerotic disease. Flow quantification using conventional PC MRI distal to stenotic vessels suffers from intravoxel dephasing and flow artifacts. Previous studies have shown that short echo time (TE) potentially decreases the phase errors. In this work, a novel 3D cine UTE-PC imaging method is designed to measure the blood velocity in the carotid bifurcation using a UTE center-out radial trajectory and short TE time compared to standard PC MRI sequences. With a new phase error correction technique based on autocorrelation method, the proposed 3D cine UTE-PC has the potential to achieve high accuracy for quantification and visualization of velocity jet distal to a stenosis. Herein, we test the feasibility of the method in determining accurate flow waveforms in normal volunteers.

Original languageEnglish (US)
Title of host publication2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012
Pages77-81
Number of pages5
DOIs
StatePublished - 2012
Event34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012 - San Diego, CA, United States
Duration: Aug 28 2012Sep 1 2012

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
Country/TerritoryUnited States
CitySan Diego, CA
Period8/28/129/1/12

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Cite this