### Abstract

We show a Poisson formula for bounded harmonic functions φ on the Sierpmski gasket y. We construct a boundary (∑, v), a measurable action of a semigroup W on ∑ and a map r: W y, such that for every bounded harmonic function φ on y φr(w))∫_{∑} Ψ(wς)v(dς) where Ψ: φ → IR is some bounded measurable function.

Original language | English (US) |
---|---|

Pages (from-to) | 435-448 |

Number of pages | 14 |

Journal | Forum (Germany) |

Volume | 12 |

Issue number | 4 |

State | Published - May 1 2000 |

### All Science Journal Classification (ASJC) codes

- Sociology and Political Science
- Social Sciences(all)

### Cite this

*Forum (Germany)*,

*12*(4), 435-448.

}

*Forum (Germany)*, vol. 12, no. 4, pp. 435-448.

**A Poisson formula for harmonic functions on the Sierpiński gasket.** / Denker, Manfred Heinz; Koch, Susanne.

Research output: Contribution to journal › Article

TY - JOUR

T1 - A Poisson formula for harmonic functions on the Sierpiński gasket

AU - Denker, Manfred Heinz

AU - Koch, Susanne

PY - 2000/5/1

Y1 - 2000/5/1

N2 - We show a Poisson formula for bounded harmonic functions φ on the Sierpmski gasket y. We construct a boundary (∑, v), a measurable action of a semigroup W on ∑ and a map r: W y, such that for every bounded harmonic function φ on y φr(w))∫∑ Ψ(wς)v(dς) where Ψ: φ → IR is some bounded measurable function.

AB - We show a Poisson formula for bounded harmonic functions φ on the Sierpmski gasket y. We construct a boundary (∑, v), a measurable action of a semigroup W on ∑ and a map r: W y, such that for every bounded harmonic function φ on y φr(w))∫∑ Ψ(wς)v(dς) where Ψ: φ → IR is some bounded measurable function.

UR - http://www.scopus.com/inward/record.url?scp=84925395826&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84925395826&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84925395826

VL - 12

SP - 435

EP - 448

JO - Forum: A Journal of Applied Research in Contemporary Politics

JF - Forum: A Journal of Applied Research in Contemporary Politics

SN - 1540-8884

IS - 4

ER -