A projection-based reduced-order method for electron transport problems with long-range interactions

Weiqi Chu, Xiantao Li

Research output: Contribution to journalArticlepeer-review

Abstract

Long-range interactions play a central role in electron transport. At the same time, they present a challenge for direct computer simulations since sufficiently large portions of the bath have to be included in the computation to accurately compute the Coulomb potential. This article presents a reduced-order approach by deriving an open quantum model for the reduced density matrix. To treat the transient dynamics, the problem is placed in a reduced-order framework. The dynamics described by the Liouville-von Neumann equation is projected to subspaces using a Petrov-Galerkin projection. In order to recover the global electron density profile as a vehicle to compute the Coulomb potential, we propose a domain decomposition approach, where the computational domain also includes segments of the bath that are selected using logarithmic grids. This approach leads to a multi-component self-energy that enters the effective Hamiltonian. We demonstrate the accuracy of the reduced model using a molecular junction built from lithium chains.

Original languageEnglish (US)
Article number114105
JournalJournal of Chemical Physics
Volume155
Issue number11
DOIs
StatePublished - Sep 21 2021

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'A projection-based reduced-order method for electron transport problems with long-range interactions'. Together they form a unique fingerprint.

Cite this