A Radiation Safety Training Program Results in Reduced Radiation Exposure for Orthopaedic Residents Using the Mini C-arm

David Gendelberg, William Hennrikus, Jennifer Slough, Douglas Armstrong, Steven King

Research output: Contribution to journalArticle

19 Scopus citations

Abstract

Background: Fluoroscopy during fracture reduction allows a physician to assess fractures and immediately treat a pediatric patient. However, concern regarding the effects of radiation exposure has led us to find ways to keep radiation exposures as low as reasonably achievable. One potentially simple way, which to our knowledge has not been explored, to decrease radiation exposure is through formal education before mini C-arm use. Questions/purposes: We questioned whether a radiation safety educational program decreases radiation (1) time and (2) exposure among residents and patients. Patients and Methods: This is a retrospective study in which second-year residents underwent a 3-hour educational program regarding mini C-arm use and radiation safety taught by our institution’s health physics department. We evaluated the records of all patients who underwent a pediatric both-bone forearm or distal radius fracture reduction in the emergency department 3 months before the educational program or after the program. To be included in the study, records included simple both-bone forearm fractures, simple distal radius fractures, and patient age younger than 18 years, and could not include patients with multiple fractures in the same limb. This resulted in study groups of 53 and 45 patients’ records in the groups before and after the educational session, respectively. Radiation emission from the mini C-arm between both groups were compared. Results: Exposure time with the mini C-arm was longer in patients treated before the educational intervention than in those treated after the intervention (patients with both-bone forearm fractures: mean = 41.2, SD = 24.7, 95% CI, 23.14–59.26 vs mean = 28.9, SD = 14.4, 95% CI, 15.91–41.89, p = 0.066; patients with distal radius fractures: mean = 38.1, SD = 26.1, 95% CI, 25.1–51.1 vs mean = 26.7, SD = 15.8, 95% CI, 16.44–36.96, p = 0.042). Calculated radiation exposure with the mini C-arm was larger in patients treated before the educational intervention than in those treated after the intervention (patients with both-bone forearm fractures: mean = 90.9, SD = 60.9, 95% CI, 51.06–130.74 vs mean = 30.4, SD = 18.5, 95% CI, 16.73–44.07, p < 0.001; patients with distal radius fractures: mean = 83.1, SD = 58.9, 95% CI, 54.75–111.45 vs mean = 32.6, SD = 26.4, 95% CI, 20.07–45.13, p < 0.001). Conclusions: A radiation-safety program resulted in decreased radiation exposure to residents and patients, and in decreased mini C-arm exposure time during pediatric fracture reductions. Level of Evidence: Level III, therapeutic study.

Original languageEnglish (US)
Pages (from-to)580-584
Number of pages5
JournalClinical orthopaedics and related research
Volume474
Issue number2
DOIs
StatePublished - Feb 1 2016

All Science Journal Classification (ASJC) codes

  • Surgery
  • Orthopedics and Sports Medicine

Fingerprint Dive into the research topics of 'A Radiation Safety Training Program Results in Reduced Radiation Exposure for Orthopaedic Residents Using the Mini C-arm'. Together they form a unique fingerprint.

Cite this