A ROS-simulink real-time communication bridge using UDP with a driver-in-the-loop application

Mohamed Wahba, Robert Leary, Nicolás Ochoa-Lleras, Jariullah Safi, Sean Brennan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

This paper presents implementation details and performance metrics for software developed to connect the Robot Operating System (ROS) with Simulink Real-Time (SLRT). The communication takes place through the User Datagram Protocol (UDP) which allows for fast transmission of large amounts of data between the two systems. We use SLRT's built-in UDP communication and binary packing blocks to send and receive the data over a network. We use implementation metrics from several examples to illustrate the effectiveness and drawbacks of this bridge in a real-time environment. The time latency of the bridge is analyzed by performing loop-back tests and obtaining the statistics of the time delay. A proof of concept experiment is presented that utilizes two laboratories that ran a driver-in-the-loop system despite a large physical separation. This work provides recommendations for implementing data integrity measures as well as the potential to use the system with other applications that demand high speed real-time communication.

Original languageEnglish (US)
Title of host publicationMechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850701
DOIs
StatePublished - Jan 1 2016
EventASME 2016 Dynamic Systems and Control Conference, DSCC 2016 - Minneapolis, United States
Duration: Oct 12 2016Oct 14 2016

Publication series

NameASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Volume2

Other

OtherASME 2016 Dynamic Systems and Control Conference, DSCC 2016
CountryUnited States
CityMinneapolis
Period10/12/1610/14/16

Fingerprint

Robots
Network protocols
Communication
Time delay
Statistics
Experiments

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Mechanical Engineering

Cite this

Wahba, M., Leary, R., Ochoa-Lleras, N., Safi, J., & Brennan, S. (2016). A ROS-simulink real-time communication bridge using UDP with a driver-in-the-loop application. In Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control (ASME 2016 Dynamic Systems and Control Conference, DSCC 2016; Vol. 2). American Society of Mechanical Engineers. https://doi.org/10.1115/DSCC2016-9693
Wahba, Mohamed ; Leary, Robert ; Ochoa-Lleras, Nicolás ; Safi, Jariullah ; Brennan, Sean. / A ROS-simulink real-time communication bridge using UDP with a driver-in-the-loop application. Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control. American Society of Mechanical Engineers, 2016. (ASME 2016 Dynamic Systems and Control Conference, DSCC 2016).
@inproceedings{202f7a56633346ae9c1e714654c333c1,
title = "A ROS-simulink real-time communication bridge using UDP with a driver-in-the-loop application",
abstract = "This paper presents implementation details and performance metrics for software developed to connect the Robot Operating System (ROS) with Simulink Real-Time (SLRT). The communication takes place through the User Datagram Protocol (UDP) which allows for fast transmission of large amounts of data between the two systems. We use SLRT's built-in UDP communication and binary packing blocks to send and receive the data over a network. We use implementation metrics from several examples to illustrate the effectiveness and drawbacks of this bridge in a real-time environment. The time latency of the bridge is analyzed by performing loop-back tests and obtaining the statistics of the time delay. A proof of concept experiment is presented that utilizes two laboratories that ran a driver-in-the-loop system despite a large physical separation. This work provides recommendations for implementing data integrity measures as well as the potential to use the system with other applications that demand high speed real-time communication.",
author = "Mohamed Wahba and Robert Leary and Nicol{\'a}s Ochoa-Lleras and Jariullah Safi and Sean Brennan",
year = "2016",
month = "1",
day = "1",
doi = "10.1115/DSCC2016-9693",
language = "English (US)",
series = "ASME 2016 Dynamic Systems and Control Conference, DSCC 2016",
publisher = "American Society of Mechanical Engineers",
booktitle = "Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control",

}

Wahba, M, Leary, R, Ochoa-Lleras, N, Safi, J & Brennan, S 2016, A ROS-simulink real-time communication bridge using UDP with a driver-in-the-loop application. in Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control. ASME 2016 Dynamic Systems and Control Conference, DSCC 2016, vol. 2, American Society of Mechanical Engineers, ASME 2016 Dynamic Systems and Control Conference, DSCC 2016, Minneapolis, United States, 10/12/16. https://doi.org/10.1115/DSCC2016-9693

A ROS-simulink real-time communication bridge using UDP with a driver-in-the-loop application. / Wahba, Mohamed; Leary, Robert; Ochoa-Lleras, Nicolás; Safi, Jariullah; Brennan, Sean.

Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control. American Society of Mechanical Engineers, 2016. (ASME 2016 Dynamic Systems and Control Conference, DSCC 2016; Vol. 2).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - A ROS-simulink real-time communication bridge using UDP with a driver-in-the-loop application

AU - Wahba, Mohamed

AU - Leary, Robert

AU - Ochoa-Lleras, Nicolás

AU - Safi, Jariullah

AU - Brennan, Sean

PY - 2016/1/1

Y1 - 2016/1/1

N2 - This paper presents implementation details and performance metrics for software developed to connect the Robot Operating System (ROS) with Simulink Real-Time (SLRT). The communication takes place through the User Datagram Protocol (UDP) which allows for fast transmission of large amounts of data between the two systems. We use SLRT's built-in UDP communication and binary packing blocks to send and receive the data over a network. We use implementation metrics from several examples to illustrate the effectiveness and drawbacks of this bridge in a real-time environment. The time latency of the bridge is analyzed by performing loop-back tests and obtaining the statistics of the time delay. A proof of concept experiment is presented that utilizes two laboratories that ran a driver-in-the-loop system despite a large physical separation. This work provides recommendations for implementing data integrity measures as well as the potential to use the system with other applications that demand high speed real-time communication.

AB - This paper presents implementation details and performance metrics for software developed to connect the Robot Operating System (ROS) with Simulink Real-Time (SLRT). The communication takes place through the User Datagram Protocol (UDP) which allows for fast transmission of large amounts of data between the two systems. We use SLRT's built-in UDP communication and binary packing blocks to send and receive the data over a network. We use implementation metrics from several examples to illustrate the effectiveness and drawbacks of this bridge in a real-time environment. The time latency of the bridge is analyzed by performing loop-back tests and obtaining the statistics of the time delay. A proof of concept experiment is presented that utilizes two laboratories that ran a driver-in-the-loop system despite a large physical separation. This work provides recommendations for implementing data integrity measures as well as the potential to use the system with other applications that demand high speed real-time communication.

UR - http://www.scopus.com/inward/record.url?scp=85015670017&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85015670017&partnerID=8YFLogxK

U2 - 10.1115/DSCC2016-9693

DO - 10.1115/DSCC2016-9693

M3 - Conference contribution

AN - SCOPUS:85015670017

T3 - ASME 2016 Dynamic Systems and Control Conference, DSCC 2016

BT - Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control

PB - American Society of Mechanical Engineers

ER -

Wahba M, Leary R, Ochoa-Lleras N, Safi J, Brennan S. A ROS-simulink real-time communication bridge using UDP with a driver-in-the-loop application. In Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control. American Society of Mechanical Engineers. 2016. (ASME 2016 Dynamic Systems and Control Conference, DSCC 2016). https://doi.org/10.1115/DSCC2016-9693