A short proof of a theorem of Ruelle

Manfred Heinz Denker, Christoph Seck

Research output: Contribution to journalArticle

Abstract

Using the existence of conformal measures in the sense of Sullivan [4] and Denker, Urbański [2] we give a simple proof of Ruelle's Theorem, that the Hausdorff dimension of a hyperbolic Julia set is the solution of the equation P(R,-tlog|R′|)=0.

Original languageEnglish (US)
Pages (from-to)295-299
Number of pages5
JournalMonatshefte für Mathematik
Volume108
Issue number4
DOIs
StatePublished - Dec 1 1989

Fingerprint

Conformal Measure
Hyperbolic Set
Julia set
Hausdorff Dimension
Theorem

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

Denker, Manfred Heinz ; Seck, Christoph. / A short proof of a theorem of Ruelle. In: Monatshefte für Mathematik. 1989 ; Vol. 108, No. 4. pp. 295-299.
@article{c65cb501dbfa47b1ba5b197b58dfbd45,
title = "A short proof of a theorem of Ruelle",
abstract = "Using the existence of conformal measures in the sense of Sullivan [4] and Denker, Urbański [2] we give a simple proof of Ruelle's Theorem, that the Hausdorff dimension of a hyperbolic Julia set is the solution of the equation P(R,-tlog|R′|)=0.",
author = "Denker, {Manfred Heinz} and Christoph Seck",
year = "1989",
month = "12",
day = "1",
doi = "10.1007/BF01501131",
language = "English (US)",
volume = "108",
pages = "295--299",
journal = "Monatshefte fur Mathematik",
issn = "0026-9255",
publisher = "Springer Wien",
number = "4",

}

A short proof of a theorem of Ruelle. / Denker, Manfred Heinz; Seck, Christoph.

In: Monatshefte für Mathematik, Vol. 108, No. 4, 01.12.1989, p. 295-299.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A short proof of a theorem of Ruelle

AU - Denker, Manfred Heinz

AU - Seck, Christoph

PY - 1989/12/1

Y1 - 1989/12/1

N2 - Using the existence of conformal measures in the sense of Sullivan [4] and Denker, Urbański [2] we give a simple proof of Ruelle's Theorem, that the Hausdorff dimension of a hyperbolic Julia set is the solution of the equation P(R,-tlog|R′|)=0.

AB - Using the existence of conformal measures in the sense of Sullivan [4] and Denker, Urbański [2] we give a simple proof of Ruelle's Theorem, that the Hausdorff dimension of a hyperbolic Julia set is the solution of the equation P(R,-tlog|R′|)=0.

UR - http://www.scopus.com/inward/record.url?scp=34249976742&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34249976742&partnerID=8YFLogxK

U2 - 10.1007/BF01501131

DO - 10.1007/BF01501131

M3 - Article

VL - 108

SP - 295

EP - 299

JO - Monatshefte fur Mathematik

JF - Monatshefte fur Mathematik

SN - 0026-9255

IS - 4

ER -