A simple ice sheet model yields realistic 100 kyr glacial cycles

Research output: Contribution to journalArticle

86 Citations (Scopus)

Abstract

Records of global ice volume for the past 700 kyr, based on oxygen isotopic data from deep-sea cores and reflecting mainly the changing Northern Hemispheric ice sheets, show a dominant cycle of roughly 100 kyr period. The records also show smaller-amplitude oscillations with spectral peaks at roughly 40 and 20 kyr periods, which are well correlated with the Milankovich insolation variations due to perturbations in the Earth's orbital parameters. However, no model has accurately simulated the 100 kyr glacial cycle. Recently Birchfield et al.1 and Oerlemans2 have obtained encouraging agreement with some features of the glacial cycle by using a simple ice sheet model with a realistic time lag in the response of the bedrock to the ice load. This study extends their basic model, first by including topography to represent high ground in the north. Improved results can then be obtained but only with unrealistic parameter values and for some aspects of the record. Further improvements areobtained by crudely parameterizing possible calving at the equatorward ice sheet tip during deglaciation by proglacial lakes and/or marine incursions from the Atlantic, as emphasized by Andrews3. The resulting ice volume curves agree fairly well with the observed records and their power spectra over the past 700 kyr.

Original languageEnglish (US)
Pages (from-to)334-338
Number of pages5
JournalNature
Volume296
Issue number5855
DOIs
StatePublished - Dec 1 1982

Fingerprint

Ice Cover
Ice
Lakes
Oceans and Seas
Oxygen

All Science Journal Classification (ASJC) codes

  • Medicine(all)
  • General

Cite this

@article{384c11e420c84c3586e11419bead29c6,
title = "A simple ice sheet model yields realistic 100 kyr glacial cycles",
abstract = "Records of global ice volume for the past 700 kyr, based on oxygen isotopic data from deep-sea cores and reflecting mainly the changing Northern Hemispheric ice sheets, show a dominant cycle of roughly 100 kyr period. The records also show smaller-amplitude oscillations with spectral peaks at roughly 40 and 20 kyr periods, which are well correlated with the Milankovich insolation variations due to perturbations in the Earth's orbital parameters. However, no model has accurately simulated the 100 kyr glacial cycle. Recently Birchfield et al.1 and Oerlemans2 have obtained encouraging agreement with some features of the glacial cycle by using a simple ice sheet model with a realistic time lag in the response of the bedrock to the ice load. This study extends their basic model, first by including topography to represent high ground in the north. Improved results can then be obtained but only with unrealistic parameter values and for some aspects of the record. Further improvements areobtained by crudely parameterizing possible calving at the equatorward ice sheet tip during deglaciation by proglacial lakes and/or marine incursions from the Atlantic, as emphasized by Andrews3. The resulting ice volume curves agree fairly well with the observed records and their power spectra over the past 700 kyr.",
author = "David Pollard",
year = "1982",
month = "12",
day = "1",
doi = "10.1038/296334a0",
language = "English (US)",
volume = "296",
pages = "334--338",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "5855",

}

A simple ice sheet model yields realistic 100 kyr glacial cycles. / Pollard, David.

In: Nature, Vol. 296, No. 5855, 01.12.1982, p. 334-338.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A simple ice sheet model yields realistic 100 kyr glacial cycles

AU - Pollard, David

PY - 1982/12/1

Y1 - 1982/12/1

N2 - Records of global ice volume for the past 700 kyr, based on oxygen isotopic data from deep-sea cores and reflecting mainly the changing Northern Hemispheric ice sheets, show a dominant cycle of roughly 100 kyr period. The records also show smaller-amplitude oscillations with spectral peaks at roughly 40 and 20 kyr periods, which are well correlated with the Milankovich insolation variations due to perturbations in the Earth's orbital parameters. However, no model has accurately simulated the 100 kyr glacial cycle. Recently Birchfield et al.1 and Oerlemans2 have obtained encouraging agreement with some features of the glacial cycle by using a simple ice sheet model with a realistic time lag in the response of the bedrock to the ice load. This study extends their basic model, first by including topography to represent high ground in the north. Improved results can then be obtained but only with unrealistic parameter values and for some aspects of the record. Further improvements areobtained by crudely parameterizing possible calving at the equatorward ice sheet tip during deglaciation by proglacial lakes and/or marine incursions from the Atlantic, as emphasized by Andrews3. The resulting ice volume curves agree fairly well with the observed records and their power spectra over the past 700 kyr.

AB - Records of global ice volume for the past 700 kyr, based on oxygen isotopic data from deep-sea cores and reflecting mainly the changing Northern Hemispheric ice sheets, show a dominant cycle of roughly 100 kyr period. The records also show smaller-amplitude oscillations with spectral peaks at roughly 40 and 20 kyr periods, which are well correlated with the Milankovich insolation variations due to perturbations in the Earth's orbital parameters. However, no model has accurately simulated the 100 kyr glacial cycle. Recently Birchfield et al.1 and Oerlemans2 have obtained encouraging agreement with some features of the glacial cycle by using a simple ice sheet model with a realistic time lag in the response of the bedrock to the ice load. This study extends their basic model, first by including topography to represent high ground in the north. Improved results can then be obtained but only with unrealistic parameter values and for some aspects of the record. Further improvements areobtained by crudely parameterizing possible calving at the equatorward ice sheet tip during deglaciation by proglacial lakes and/or marine incursions from the Atlantic, as emphasized by Andrews3. The resulting ice volume curves agree fairly well with the observed records and their power spectra over the past 700 kyr.

UR - http://www.scopus.com/inward/record.url?scp=0020076219&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0020076219&partnerID=8YFLogxK

U2 - 10.1038/296334a0

DO - 10.1038/296334a0

M3 - Article

VL - 296

SP - 334

EP - 338

JO - Nature

JF - Nature

SN - 0028-0836

IS - 5855

ER -