A simple modification of near-infrared photon-to-electron response with fluorescence resonance energy transfer for dye-sensitized solar cells

Liang Li, Yulin Yang, Ruiqing Fan, Yanxia Jiang, Liguo Wei, Yan Shi, Jia Yu, Shuo Chen, Ping Wang, Bin Yang, Wenwu Cao

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Upconversion (UC) Er, Yb-YF3 is introduced into dye-sensitized solar cells (DSSC) through a simple method to investigate the effect of UC particles in photoanode. The utilization of UC phosphor can significantly improve the photocurrent of the cells under both infrared irradiation and sunlight. Fluorescence resonance energy transfer (FRET) and luminescence- mediated energy transfer between UC-YF3 and N719 dye are explored as the main contribution that UC-YF3 made to DSSC. With the multi-efforts of UC-YF3, power conversion efficiency (PCE) of DSSC is improved from 5.18% to 6.22%. Besides, Electron transfer between UC-YF 3 and TiO2 is found after sintered at 450 °C, and the PCE value of DSSC is improved further (5.34% → 6.76%). In addition, we explore that UC-YF3 can serve as a scattering material to increase the light absorption capability of the cells and increase the photocurrent of the cells under simulated sunlight irradiation.

Original languageEnglish (US)
Pages (from-to)254-261
Number of pages8
JournalJournal of Power Sources
Volume264
DOIs
StatePublished - Oct 15 2014

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A simple modification of near-infrared photon-to-electron response with fluorescence resonance energy transfer for dye-sensitized solar cells'. Together they form a unique fingerprint.

Cite this