A soft-contact and wrench based approach to study grasp planning and execution

Tarkeshwar Singh, Satyajit Ambike

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Grasping research in robotics has made remarkable progress in the last three decades and sophisticated computational tools are now available for planning robotic grasping in complex environments. However, studying the neural control of prehension in humans is more complex than studying robotic grasping. The elaborate musculoskeletal geometries and complex neural inputs to the hand facilitate a symphonic interplay of power and precision that allows humans to grasp fragile objects in a stable way without either crushing or dropping them. Most prehension studies have focused on a planar simplification of prehension since planar analyses render the complex problem of prehension tractable with few variables. The caveat is that planar simplification allows researchers to ask only a limited set of questions. In fact, one of the problems with extending prehension studies to three dimensions is the lack of analytical tools for quantifying features of spatial prehension. The current paper provides a theoretical adaptation and a step-by-step implementation of a widely used soft-contact wrench model for spatial human prehension. We propose two indices, grasp caliber and grasp intensity, to quantitatively relate digit placement and digit forces to grasp stability. Grasp caliber is the smallest singular value of the grasp matrix and it indicates the proximity of the current grasp configuration to instability. Grasp intensity is the magnitude of the excessive wrench applied by the digits to counter perturbations. Apart from quantifying stability of spatial grasps, these indices can also be applied to investigate sensory-motor coupling and the role of perception in grasp planning.

Original languageEnglish (US)
Pages (from-to)3961-3967
Number of pages7
JournalJournal of Biomechanics
Volume48
Issue number14
DOIs
StatePublished - Nov 5 2015

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Orthopedics and Sports Medicine
  • Biomedical Engineering
  • Rehabilitation

Fingerprint

Dive into the research topics of 'A soft-contact and wrench based approach to study grasp planning and execution'. Together they form a unique fingerprint.

Cite this