A subglacial water-flow model for west Antarctica

A. M. Le Brocq, A. J. Payne, M. J. Siegert, R. B. Alley

Research output: Contribution to journalArticlepeer-review

85 Scopus citations

Abstract

The current generation of continental-scale ice-sheet models cannot successfully reproduce the complex ice/water/sediment interactions of the West Antarctic ice sheet (WAIS) in a physically meaningful manner. The potential of a thin-film-based subglacial water-flow model for incorporation into a continental-scale coupled ice/water flow model of the WAIS is evaluated in this paper. The subglacial water-flow model is applied to the Ross Sea sector of the WAIS, in both a steady-state and time-dependent form, to derive the equilibrium water depth for the present-day configuration. The potential for coupling the model to an ice-flow model is then demonstrated, using a variable sliding parameter that is a function of the subglacial water depth. A coupled ice/water flow model, using the parameterization tested in this paper, could have the potential for reproducing the surface elevation, velocity and thermal regime of the WAIS successfully. These requirements are crucial in modelling the evolution of the WAIS, and must be addressed before reliable continental-scale predictive models can be utilized.

Original languageEnglish (US)
Pages (from-to)879-888
Number of pages10
JournalJournal of Glaciology
Volume55
Issue number193
DOIs
StatePublished - 2009

All Science Journal Classification (ASJC) codes

  • Earth-Surface Processes

Fingerprint

Dive into the research topics of 'A subglacial water-flow model for west Antarctica'. Together they form a unique fingerprint.

Cite this