A technique for analyzing the structure of isometries

Abhay Ashtekar, Anne Magnon-Ashtekar

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

A new technique is introduced to investigate the structure of isometry Lie algebras. Some general results are first proved by applying this technique to n-dimensional manifolds equipped with metrics of arbitrary signature. A restriction is then made to 3-manifolds representing the space of orbits of the timelike Killing field in stationary space-times. Under the assumption of asymptotic flatness at spatial infinity, a complete description of isometry Lie algebras of these 3-manifolds is obtained. As corollaries, several results about symmetries of stationary isolated systems in general relativity are proved.

Original languageEnglish (US)
Pages (from-to)1567-1572
Number of pages6
JournalJournal of Mathematical Physics
Volume19
Issue number7
StatePublished - Dec 1 1977

Fingerprint

Isometry
Lie Algebra
algebra
Flatness
flatness
General Relativity
infinity
relativity
n-dimensional
constrictions
Corollary
Signature
Orbit
Space-time
signatures
Infinity
Restriction
orbits
Symmetry
Metric

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Cite this

Ashtekar, Abhay ; Magnon-Ashtekar, Anne. / A technique for analyzing the structure of isometries. In: Journal of Mathematical Physics. 1977 ; Vol. 19, No. 7. pp. 1567-1572.
@article{f5198086dd624d398d3d0c3da0bc49c7,
title = "A technique for analyzing the structure of isometries",
abstract = "A new technique is introduced to investigate the structure of isometry Lie algebras. Some general results are first proved by applying this technique to n-dimensional manifolds equipped with metrics of arbitrary signature. A restriction is then made to 3-manifolds representing the space of orbits of the timelike Killing field in stationary space-times. Under the assumption of asymptotic flatness at spatial infinity, a complete description of isometry Lie algebras of these 3-manifolds is obtained. As corollaries, several results about symmetries of stationary isolated systems in general relativity are proved.",
author = "Abhay Ashtekar and Anne Magnon-Ashtekar",
year = "1977",
month = "12",
day = "1",
language = "English (US)",
volume = "19",
pages = "1567--1572",
journal = "Journal of Mathematical Physics",
issn = "0022-2488",
publisher = "American Institute of Physics Publising LLC",
number = "7",

}

Ashtekar, A & Magnon-Ashtekar, A 1977, 'A technique for analyzing the structure of isometries', Journal of Mathematical Physics, vol. 19, no. 7, pp. 1567-1572.

A technique for analyzing the structure of isometries. / Ashtekar, Abhay; Magnon-Ashtekar, Anne.

In: Journal of Mathematical Physics, Vol. 19, No. 7, 01.12.1977, p. 1567-1572.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A technique for analyzing the structure of isometries

AU - Ashtekar, Abhay

AU - Magnon-Ashtekar, Anne

PY - 1977/12/1

Y1 - 1977/12/1

N2 - A new technique is introduced to investigate the structure of isometry Lie algebras. Some general results are first proved by applying this technique to n-dimensional manifolds equipped with metrics of arbitrary signature. A restriction is then made to 3-manifolds representing the space of orbits of the timelike Killing field in stationary space-times. Under the assumption of asymptotic flatness at spatial infinity, a complete description of isometry Lie algebras of these 3-manifolds is obtained. As corollaries, several results about symmetries of stationary isolated systems in general relativity are proved.

AB - A new technique is introduced to investigate the structure of isometry Lie algebras. Some general results are first proved by applying this technique to n-dimensional manifolds equipped with metrics of arbitrary signature. A restriction is then made to 3-manifolds representing the space of orbits of the timelike Killing field in stationary space-times. Under the assumption of asymptotic flatness at spatial infinity, a complete description of isometry Lie algebras of these 3-manifolds is obtained. As corollaries, several results about symmetries of stationary isolated systems in general relativity are proved.

UR - http://www.scopus.com/inward/record.url?scp=36749114270&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36749114270&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:36749114270

VL - 19

SP - 1567

EP - 1572

JO - Journal of Mathematical Physics

JF - Journal of Mathematical Physics

SN - 0022-2488

IS - 7

ER -