A Theoretical Investigation on the Anisotropic Surface Stability and Oxygen Adsorption Behavior of ZrB2

Wei Sun, Jiachen Liu, Huimin Xiang, Yanchun Zhou, S. Sinnott

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Surfaces play pivotal roles during the oxidation and interfacial bonding of ZrB2. To understand the surface properties, the anisotropic stability and oxygen adsorption behavior of ZrB2 surfaces, including ((Formula presented.)), two types of (0001) and three types of ((Formula presented.)), were investigated by first-principles calculations. Using a series of two-region models, the surface energies were calculated and the (0001) surfaces were found to be less stable than the prismatic ones. The hexagonal rod-like ZrB2 grain morphology was predicted during the crystal growth under equilibrium conditions. The adsorption energies, electronic structure, and bonding feature of the adsorbed surfaces were also investigated. The Zr-terminated surfaces were predicted to be more favorable to adsorb oxygen, and the (0001) surfaces should have better oxidation resistance than other surfaces in the equilibrium ZrB2 grains. The Zr-terminated (0001) surface was also speculated to be stable in the oxygen-rich environment.

Original languageEnglish (US)
Pages (from-to)4113-4120
Number of pages8
JournalJournal of the American Ceramic Society
Volume99
Issue number12
DOIs
StatePublished - Dec 1 2016

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Materials Chemistry

Fingerprint Dive into the research topics of 'A Theoretical Investigation on the Anisotropic Surface Stability and Oxygen Adsorption Behavior of ZrB<sub>2</sub>'. Together they form a unique fingerprint.

Cite this