A thermal spike model of grain growth under irradiation

D. Kaoumi, Arthur Thompson Motta, R. C. Birtcher

Research output: Contribution to journalArticle

108 Citations (Scopus)

Abstract

The experimental study of grain growth in nanocrystalline metallic foils under ion irradiation showed the existence of a low-temperature regime (below about 0.15-0.22 Tm), where grain growth is independent of the irradiation temperature, and a thermally assisted regime where grain growth is enhanced with increasing irradiation temperature. A model is proposed to describe grain growth under irradiation in the temperature-independent regime, based on the direct impact of the thermal spikes on grain boundaries. In the model, grain-boundary migration occurs by atomic jumps, within the thermal spikes, biased by the local grain-boundary curvature driving. The jumps in the spike are calculated based on Vineyard's analysis of thermal spikes and activated processes using a spherical geometry for the spike. The model incorporates cascade structure features such as subcascade formation, and the probability of subcascades occurring at grain boundaries. This results in a power law expression relating the average grain size with the ion dose with an exponent equal to 3, in agreement with the experimental observations. The model is applied to grain growth observed in situ in a transmission electron microscope in a wide range of doses, temperature, and irradiation conditions for four different pure metals, and shown to predict well the results in all applicable cases. Some discussions are also presented on the expansion of the model to the thermally assisted regime. The paper is organized in six sections. Section gives background and literature review, while Secs. review experimental methods and results for in situ grain growth under irradiation. Section derives the model proposed to find the grain-growth equation in the nonthermal regime, and in Sec. the model is applied to the results. In Sec. grain growth in the thermally assisted regime is discussed and Sec. presents the conclusions.

Original languageEnglish (US)
Article number073525
JournalJournal of Applied Physics
Volume104
Issue number7
DOIs
StatePublished - Oct 22 2008

Fingerprint

spikes
irradiation
grain boundaries
vineyards
dosage
temperature
ion irradiation
foils
cascades
electron microscopes
grain size
curvature
exponents
expansion
geometry
metals
ions

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

@article{e2dcefb08dff44f9859bd60aa2ecbc69,
title = "A thermal spike model of grain growth under irradiation",
abstract = "The experimental study of grain growth in nanocrystalline metallic foils under ion irradiation showed the existence of a low-temperature regime (below about 0.15-0.22 Tm), where grain growth is independent of the irradiation temperature, and a thermally assisted regime where grain growth is enhanced with increasing irradiation temperature. A model is proposed to describe grain growth under irradiation in the temperature-independent regime, based on the direct impact of the thermal spikes on grain boundaries. In the model, grain-boundary migration occurs by atomic jumps, within the thermal spikes, biased by the local grain-boundary curvature driving. The jumps in the spike are calculated based on Vineyard's analysis of thermal spikes and activated processes using a spherical geometry for the spike. The model incorporates cascade structure features such as subcascade formation, and the probability of subcascades occurring at grain boundaries. This results in a power law expression relating the average grain size with the ion dose with an exponent equal to 3, in agreement with the experimental observations. The model is applied to grain growth observed in situ in a transmission electron microscope in a wide range of doses, temperature, and irradiation conditions for four different pure metals, and shown to predict well the results in all applicable cases. Some discussions are also presented on the expansion of the model to the thermally assisted regime. The paper is organized in six sections. Section gives background and literature review, while Secs. review experimental methods and results for in situ grain growth under irradiation. Section derives the model proposed to find the grain-growth equation in the nonthermal regime, and in Sec. the model is applied to the results. In Sec. grain growth in the thermally assisted regime is discussed and Sec. presents the conclusions.",
author = "D. Kaoumi and Motta, {Arthur Thompson} and Birtcher, {R. C.}",
year = "2008",
month = "10",
day = "22",
doi = "10.1063/1.2988142",
language = "English (US)",
volume = "104",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "7",

}

A thermal spike model of grain growth under irradiation. / Kaoumi, D.; Motta, Arthur Thompson; Birtcher, R. C.

In: Journal of Applied Physics, Vol. 104, No. 7, 073525, 22.10.2008.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A thermal spike model of grain growth under irradiation

AU - Kaoumi, D.

AU - Motta, Arthur Thompson

AU - Birtcher, R. C.

PY - 2008/10/22

Y1 - 2008/10/22

N2 - The experimental study of grain growth in nanocrystalline metallic foils under ion irradiation showed the existence of a low-temperature regime (below about 0.15-0.22 Tm), where grain growth is independent of the irradiation temperature, and a thermally assisted regime where grain growth is enhanced with increasing irradiation temperature. A model is proposed to describe grain growth under irradiation in the temperature-independent regime, based on the direct impact of the thermal spikes on grain boundaries. In the model, grain-boundary migration occurs by atomic jumps, within the thermal spikes, biased by the local grain-boundary curvature driving. The jumps in the spike are calculated based on Vineyard's analysis of thermal spikes and activated processes using a spherical geometry for the spike. The model incorporates cascade structure features such as subcascade formation, and the probability of subcascades occurring at grain boundaries. This results in a power law expression relating the average grain size with the ion dose with an exponent equal to 3, in agreement with the experimental observations. The model is applied to grain growth observed in situ in a transmission electron microscope in a wide range of doses, temperature, and irradiation conditions for four different pure metals, and shown to predict well the results in all applicable cases. Some discussions are also presented on the expansion of the model to the thermally assisted regime. The paper is organized in six sections. Section gives background and literature review, while Secs. review experimental methods and results for in situ grain growth under irradiation. Section derives the model proposed to find the grain-growth equation in the nonthermal regime, and in Sec. the model is applied to the results. In Sec. grain growth in the thermally assisted regime is discussed and Sec. presents the conclusions.

AB - The experimental study of grain growth in nanocrystalline metallic foils under ion irradiation showed the existence of a low-temperature regime (below about 0.15-0.22 Tm), where grain growth is independent of the irradiation temperature, and a thermally assisted regime where grain growth is enhanced with increasing irradiation temperature. A model is proposed to describe grain growth under irradiation in the temperature-independent regime, based on the direct impact of the thermal spikes on grain boundaries. In the model, grain-boundary migration occurs by atomic jumps, within the thermal spikes, biased by the local grain-boundary curvature driving. The jumps in the spike are calculated based on Vineyard's analysis of thermal spikes and activated processes using a spherical geometry for the spike. The model incorporates cascade structure features such as subcascade formation, and the probability of subcascades occurring at grain boundaries. This results in a power law expression relating the average grain size with the ion dose with an exponent equal to 3, in agreement with the experimental observations. The model is applied to grain growth observed in situ in a transmission electron microscope in a wide range of doses, temperature, and irradiation conditions for four different pure metals, and shown to predict well the results in all applicable cases. Some discussions are also presented on the expansion of the model to the thermally assisted regime. The paper is organized in six sections. Section gives background and literature review, while Secs. review experimental methods and results for in situ grain growth under irradiation. Section derives the model proposed to find the grain-growth equation in the nonthermal regime, and in Sec. the model is applied to the results. In Sec. grain growth in the thermally assisted regime is discussed and Sec. presents the conclusions.

UR - http://www.scopus.com/inward/record.url?scp=54049153605&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=54049153605&partnerID=8YFLogxK

U2 - 10.1063/1.2988142

DO - 10.1063/1.2988142

M3 - Article

VL - 104

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 7

M1 - 073525

ER -