Abelian subvarieties of Drinfeld Jacobians and congruences modulo the characteristic

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We relate the existence of Frobenius morphisms into the Jacobians of Drinfeld modular curves to the existence of congruences between cusp forms.

Original languageEnglish (US)
Pages (from-to)139-157
Number of pages19
JournalMathematische Annalen
Volume337
Issue number1
DOIs
StatePublished - Jan 1 2007

Fingerprint

Congruence
Modulo
Modular Curves
Cusp Form
Frobenius
Morphisms

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{def0878b1b6d43eda56d2a75cf079d6e,
title = "Abelian subvarieties of Drinfeld Jacobians and congruences modulo the characteristic",
abstract = "We relate the existence of Frobenius morphisms into the Jacobians of Drinfeld modular curves to the existence of congruences between cusp forms.",
author = "Mihran Papikian",
year = "2007",
month = "1",
day = "1",
doi = "10.1007/s00208-006-0029-3",
language = "English (US)",
volume = "337",
pages = "139--157",
journal = "Mathematische Annalen",
issn = "0025-5831",
publisher = "Springer New York",
number = "1",

}

Abelian subvarieties of Drinfeld Jacobians and congruences modulo the characteristic. / Papikian, Mihran.

In: Mathematische Annalen, Vol. 337, No. 1, 01.01.2007, p. 139-157.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Abelian subvarieties of Drinfeld Jacobians and congruences modulo the characteristic

AU - Papikian, Mihran

PY - 2007/1/1

Y1 - 2007/1/1

N2 - We relate the existence of Frobenius morphisms into the Jacobians of Drinfeld modular curves to the existence of congruences between cusp forms.

AB - We relate the existence of Frobenius morphisms into the Jacobians of Drinfeld modular curves to the existence of congruences between cusp forms.

UR - http://www.scopus.com/inward/record.url?scp=33751118478&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33751118478&partnerID=8YFLogxK

U2 - 10.1007/s00208-006-0029-3

DO - 10.1007/s00208-006-0029-3

M3 - Article

AN - SCOPUS:33751118478

VL - 337

SP - 139

EP - 157

JO - Mathematische Annalen

JF - Mathematische Annalen

SN - 0025-5831

IS - 1

ER -