Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres

A. Segura, V. S. Meadows, James Kasting, D. Crisp, M. Cohen

Research output: Contribution to journalArticle

96 Citations (Scopus)

Abstract

Context. Previous research has indicated that high amounts of ozone (O 3) and oxygen (O2) may be produced abiotically in atmospheres with high concentrations of CO2. The abiotic production of these two gases, which are also characteristic of photosynthetic life processes, could pose a potential "false-positive" for remote-sensing detection of life on planets around other stars. We show here that such false positives are unlikely on any planet that possesses abundant liquid water, as rainout of oxidized species onto a reduced planetary surface should ensure that atmospheric H2 concentrations remain relatively high, and that O 2 and O3 remain low. Aims. Our gool is to determine the amount of O3 and O2 formed in a high CO2 atmosphere for a habitable planet without life. Methods. We use a photochemical model that considers hydrogen (H2) escape and a detailed hydrogen balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher UV radiation. The concentrations obtained by the photochemical model were used as input in a radiative transfer model that calculated the spectra of the modeled planets. Results. The O 3 and O2 concentrations in the simulated planets are extremely small, and unlikely to produce a detectable signature in the spectra of those planets. Conclusions. With a balanced hydrogen budget, and for planets with an active hydrological cycle, abiotic formation of O2 and O 3 is unlikely to create a possible false positive for life detection in either the visible/near-infrared or mid-infrared wavelength regimes.

Original languageEnglish (US)
Pages (from-to)665-679
Number of pages15
JournalAstronomy and Astrophysics
Volume472
Issue number2
DOIs
StatePublished - Sep 1 2007

Fingerprint

planets
planet
atmospheres
atmosphere
hydrogen
sun
hydrological cycle
planetary surfaces
stars
planetary surface
budgets
radiative transfer
ozone
escape
remote sensing
near infrared
signatures
wavelength
oxygen
liquid

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Segura, A. ; Meadows, V. S. ; Kasting, James ; Crisp, D. ; Cohen, M. / Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres. In: Astronomy and Astrophysics. 2007 ; Vol. 472, No. 2. pp. 665-679.
@article{24e38a47d9b44be7996b19209caa04cd,
title = "Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres",
abstract = "Context. Previous research has indicated that high amounts of ozone (O 3) and oxygen (O2) may be produced abiotically in atmospheres with high concentrations of CO2. The abiotic production of these two gases, which are also characteristic of photosynthetic life processes, could pose a potential {"}false-positive{"} for remote-sensing detection of life on planets around other stars. We show here that such false positives are unlikely on any planet that possesses abundant liquid water, as rainout of oxidized species onto a reduced planetary surface should ensure that atmospheric H2 concentrations remain relatively high, and that O 2 and O3 remain low. Aims. Our gool is to determine the amount of O3 and O2 formed in a high CO2 atmosphere for a habitable planet without life. Methods. We use a photochemical model that considers hydrogen (H2) escape and a detailed hydrogen balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher UV radiation. The concentrations obtained by the photochemical model were used as input in a radiative transfer model that calculated the spectra of the modeled planets. Results. The O 3 and O2 concentrations in the simulated planets are extremely small, and unlikely to produce a detectable signature in the spectra of those planets. Conclusions. With a balanced hydrogen budget, and for planets with an active hydrological cycle, abiotic formation of O2 and O 3 is unlikely to create a possible false positive for life detection in either the visible/near-infrared or mid-infrared wavelength regimes.",
author = "A. Segura and Meadows, {V. S.} and James Kasting and D. Crisp and M. Cohen",
year = "2007",
month = "9",
day = "1",
doi = "10.1051/0004-6361:20066663",
language = "English (US)",
volume = "472",
pages = "665--679",
journal = "Astronomy and Astrophysics",
issn = "0004-6361",
publisher = "EDP Sciences",
number = "2",

}

Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres. / Segura, A.; Meadows, V. S.; Kasting, James; Crisp, D.; Cohen, M.

In: Astronomy and Astrophysics, Vol. 472, No. 2, 01.09.2007, p. 665-679.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres

AU - Segura, A.

AU - Meadows, V. S.

AU - Kasting, James

AU - Crisp, D.

AU - Cohen, M.

PY - 2007/9/1

Y1 - 2007/9/1

N2 - Context. Previous research has indicated that high amounts of ozone (O 3) and oxygen (O2) may be produced abiotically in atmospheres with high concentrations of CO2. The abiotic production of these two gases, which are also characteristic of photosynthetic life processes, could pose a potential "false-positive" for remote-sensing detection of life on planets around other stars. We show here that such false positives are unlikely on any planet that possesses abundant liquid water, as rainout of oxidized species onto a reduced planetary surface should ensure that atmospheric H2 concentrations remain relatively high, and that O 2 and O3 remain low. Aims. Our gool is to determine the amount of O3 and O2 formed in a high CO2 atmosphere for a habitable planet without life. Methods. We use a photochemical model that considers hydrogen (H2) escape and a detailed hydrogen balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher UV radiation. The concentrations obtained by the photochemical model were used as input in a radiative transfer model that calculated the spectra of the modeled planets. Results. The O 3 and O2 concentrations in the simulated planets are extremely small, and unlikely to produce a detectable signature in the spectra of those planets. Conclusions. With a balanced hydrogen budget, and for planets with an active hydrological cycle, abiotic formation of O2 and O 3 is unlikely to create a possible false positive for life detection in either the visible/near-infrared or mid-infrared wavelength regimes.

AB - Context. Previous research has indicated that high amounts of ozone (O 3) and oxygen (O2) may be produced abiotically in atmospheres with high concentrations of CO2. The abiotic production of these two gases, which are also characteristic of photosynthetic life processes, could pose a potential "false-positive" for remote-sensing detection of life on planets around other stars. We show here that such false positives are unlikely on any planet that possesses abundant liquid water, as rainout of oxidized species onto a reduced planetary surface should ensure that atmospheric H2 concentrations remain relatively high, and that O 2 and O3 remain low. Aims. Our gool is to determine the amount of O3 and O2 formed in a high CO2 atmosphere for a habitable planet without life. Methods. We use a photochemical model that considers hydrogen (H2) escape and a detailed hydrogen balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher UV radiation. The concentrations obtained by the photochemical model were used as input in a radiative transfer model that calculated the spectra of the modeled planets. Results. The O 3 and O2 concentrations in the simulated planets are extremely small, and unlikely to produce a detectable signature in the spectra of those planets. Conclusions. With a balanced hydrogen budget, and for planets with an active hydrological cycle, abiotic formation of O2 and O 3 is unlikely to create a possible false positive for life detection in either the visible/near-infrared or mid-infrared wavelength regimes.

UR - http://www.scopus.com/inward/record.url?scp=34548656745&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34548656745&partnerID=8YFLogxK

U2 - 10.1051/0004-6361:20066663

DO - 10.1051/0004-6361:20066663

M3 - Article

VL - 472

SP - 665

EP - 679

JO - Astronomy and Astrophysics

JF - Astronomy and Astrophysics

SN - 0004-6361

IS - 2

ER -