Acetazolamide suppresses the prevalence of augmented breaths during exposure to hypoxia

Harold J. Bell, Philippe Haouzi

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Augmented breaths, or "sighs," commonly destabilize respiratory rhythm, precipitating apneas and variability in the depth and rate of breathing, which may then exacerbate sleep-disordered breathing in vulnerable individuals. We previously demonstrated that hypocapnia is a unique condition associated with a high prevalence of augmented breaths during exposure to hypoxia; the prevalence of augmented breaths during hypoxia can be returned to normal simply by the addition of CO2 to the inspired air. We hypothesized that counteracting the effect of respiratory alkalosis during hypocapnic hypoxia by blocking carbonic anhydrase would yield a similar effect. We, therefore, investigated the effect of acetazolamide on the prevalence of augmented breaths in the resting breathing cycle in five awake, adult male rats. We found a 475% increase in the prevalence of augmented breaths in animals exposed to hypocapnic hypoxia compared with room air. Acetazolamide treatment (100 mg/kg ip bid) for 3 days resulted in a rapid and potent suppression of the generation of augmented breaths during hypoxia. Within 90 min of the first dose of acetazolamide, the prevalence of augmented breaths in hypoxia fell to levels that were no greater than those observed in room air. On cessation of treatment, exposure to hypocapnic hypoxia once again caused a large increase in the prevalence of augmented breaths. These results reveal a novel means by which acetazolamide acts to stabilize breathing and may help explain the beneficial effects of the drug on breathing stability at altitude and in patients with central forms of sleep-disordered breathing.

Original languageEnglish (US)
Pages (from-to)R370-R381
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume297
Issue number2
DOIs
StatePublished - Aug 1 2009

Fingerprint

Acetazolamide
Respiration
Air
Respiratory Alkalosis
Central Sleep Apnea
Hypocapnia
Withholding Treatment
Carbonic Anhydrases
Sleep Apnea Syndromes
Apnea
Hypoxia
Pharmaceutical Preparations

All Science Journal Classification (ASJC) codes

  • Physiology
  • Physiology (medical)

Cite this

@article{bdef673a9e434db5bfa9d27c64df6aa3,
title = "Acetazolamide suppresses the prevalence of augmented breaths during exposure to hypoxia",
abstract = "Augmented breaths, or {"}sighs,{"} commonly destabilize respiratory rhythm, precipitating apneas and variability in the depth and rate of breathing, which may then exacerbate sleep-disordered breathing in vulnerable individuals. We previously demonstrated that hypocapnia is a unique condition associated with a high prevalence of augmented breaths during exposure to hypoxia; the prevalence of augmented breaths during hypoxia can be returned to normal simply by the addition of CO2 to the inspired air. We hypothesized that counteracting the effect of respiratory alkalosis during hypocapnic hypoxia by blocking carbonic anhydrase would yield a similar effect. We, therefore, investigated the effect of acetazolamide on the prevalence of augmented breaths in the resting breathing cycle in five awake, adult male rats. We found a 475{\%} increase in the prevalence of augmented breaths in animals exposed to hypocapnic hypoxia compared with room air. Acetazolamide treatment (100 mg/kg ip bid) for 3 days resulted in a rapid and potent suppression of the generation of augmented breaths during hypoxia. Within 90 min of the first dose of acetazolamide, the prevalence of augmented breaths in hypoxia fell to levels that were no greater than those observed in room air. On cessation of treatment, exposure to hypocapnic hypoxia once again caused a large increase in the prevalence of augmented breaths. These results reveal a novel means by which acetazolamide acts to stabilize breathing and may help explain the beneficial effects of the drug on breathing stability at altitude and in patients with central forms of sleep-disordered breathing.",
author = "Bell, {Harold J.} and Philippe Haouzi",
year = "2009",
month = "8",
day = "1",
doi = "10.1152/ajpregu.00126.2009",
language = "English (US)",
volume = "297",
pages = "R370--R381",
journal = "American Journal of Physiology",
issn = "0363-6119",
publisher = "American Physiological Society",
number = "2",

}

TY - JOUR

T1 - Acetazolamide suppresses the prevalence of augmented breaths during exposure to hypoxia

AU - Bell, Harold J.

AU - Haouzi, Philippe

PY - 2009/8/1

Y1 - 2009/8/1

N2 - Augmented breaths, or "sighs," commonly destabilize respiratory rhythm, precipitating apneas and variability in the depth and rate of breathing, which may then exacerbate sleep-disordered breathing in vulnerable individuals. We previously demonstrated that hypocapnia is a unique condition associated with a high prevalence of augmented breaths during exposure to hypoxia; the prevalence of augmented breaths during hypoxia can be returned to normal simply by the addition of CO2 to the inspired air. We hypothesized that counteracting the effect of respiratory alkalosis during hypocapnic hypoxia by blocking carbonic anhydrase would yield a similar effect. We, therefore, investigated the effect of acetazolamide on the prevalence of augmented breaths in the resting breathing cycle in five awake, adult male rats. We found a 475% increase in the prevalence of augmented breaths in animals exposed to hypocapnic hypoxia compared with room air. Acetazolamide treatment (100 mg/kg ip bid) for 3 days resulted in a rapid and potent suppression of the generation of augmented breaths during hypoxia. Within 90 min of the first dose of acetazolamide, the prevalence of augmented breaths in hypoxia fell to levels that were no greater than those observed in room air. On cessation of treatment, exposure to hypocapnic hypoxia once again caused a large increase in the prevalence of augmented breaths. These results reveal a novel means by which acetazolamide acts to stabilize breathing and may help explain the beneficial effects of the drug on breathing stability at altitude and in patients with central forms of sleep-disordered breathing.

AB - Augmented breaths, or "sighs," commonly destabilize respiratory rhythm, precipitating apneas and variability in the depth and rate of breathing, which may then exacerbate sleep-disordered breathing in vulnerable individuals. We previously demonstrated that hypocapnia is a unique condition associated with a high prevalence of augmented breaths during exposure to hypoxia; the prevalence of augmented breaths during hypoxia can be returned to normal simply by the addition of CO2 to the inspired air. We hypothesized that counteracting the effect of respiratory alkalosis during hypocapnic hypoxia by blocking carbonic anhydrase would yield a similar effect. We, therefore, investigated the effect of acetazolamide on the prevalence of augmented breaths in the resting breathing cycle in five awake, adult male rats. We found a 475% increase in the prevalence of augmented breaths in animals exposed to hypocapnic hypoxia compared with room air. Acetazolamide treatment (100 mg/kg ip bid) for 3 days resulted in a rapid and potent suppression of the generation of augmented breaths during hypoxia. Within 90 min of the first dose of acetazolamide, the prevalence of augmented breaths in hypoxia fell to levels that were no greater than those observed in room air. On cessation of treatment, exposure to hypocapnic hypoxia once again caused a large increase in the prevalence of augmented breaths. These results reveal a novel means by which acetazolamide acts to stabilize breathing and may help explain the beneficial effects of the drug on breathing stability at altitude and in patients with central forms of sleep-disordered breathing.

UR - http://www.scopus.com/inward/record.url?scp=68049100395&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=68049100395&partnerID=8YFLogxK

U2 - 10.1152/ajpregu.00126.2009

DO - 10.1152/ajpregu.00126.2009

M3 - Article

C2 - 19494178

AN - SCOPUS:68049100395

VL - 297

SP - R370-R381

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0363-6119

IS - 2

ER -