Achievable rate for energy harvesting channel with finite blocklength

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

This paper characterizes an achievable channel coding rate for a noiseless binary communication channel with an energy harvesting (EH) transmitter at a given blocklength n and error probability ε. As energy arrives randomly at the transmitter, codewords must obey the cumulative stochastic energy constraints. The coupling of the energy constraints on the symbols in a codeword makes the analysis fundamentally different from that of discrete memoryless channels. We first adopt a random coding scheme to construct the codebook with statistical information of the EH process. We then analyze the statistics of the corresponding output sequence. Specifically, we prove that the average number of mismatches between the input codeword and the output sequence scales as O(√n). Based on such characterization, we then propose a decoding scheme, and analyze the corresponding probability of decoding error. Finally, we explicitly characterize the maximum size of the length-n codebook generated by the random coding scheme in order to achieve the average probability of error ε. This leads to a lower bound on the maximum achievable channel coding rate for the EH communication channel. We show that the gap between the lower bound and the corresponding channel capacity under an equivalent average power constraint scales in O(llog n/√n), where l is a constant depending on the error probability ?, and the statistics of the energy harvesting process.

Original languageEnglish (US)
Title of host publication2014 IEEE International Symposium on Information Theory, ISIT 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages811-815
Number of pages5
ISBN (Print)9781479951864
DOIs
StatePublished - 2014
Event2014 IEEE International Symposium on Information Theory, ISIT 2014 - Honolulu, HI, United States
Duration: Jun 29 2014Jul 4 2014

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Other

Other2014 IEEE International Symposium on Information Theory, ISIT 2014
CountryUnited States
CityHonolulu, HI
Period6/29/147/4/14

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Achievable rate for energy harvesting channel with finite blocklength'. Together they form a unique fingerprint.

Cite this