TY - JOUR
T1 - Achieving High Energy Density in PVDF-Based Polymer Blends
T2 - Suppression of Early Polarization Saturation and Enhancement of Breakdown Strength
AU - Zhang, Xin
AU - Shen, Yang
AU - Shen, Zhonghui
AU - Jiang, Jianyong
AU - Chen, Longqing
AU - Nan, Ce Wen
PY - 2016/10/12
Y1 - 2016/10/12
N2 - Polymers with high dielectric strength and favorable flexibility have been considered promising materials for dielectrics and energy storage applications, while the achievable energy density (Ue) of polymer is rather limited by the intrinsic low dielectric constant and ferroelectric hysteresis. Polyvinylidene fluoride-trifluoroethylene-chlorofluoroethylene (P(VDF-TrFE-CFE)) with ultrahigh ϵr of >50 is considered promising in achieving high Ue of polymer dielectrics. However, P(VDF-TrFE-CFE) only exhibits moderate Ue due to the early saturation of electrical polarization at low electric field. In this contribution, we show that, by blending P(VDF-TrFE-CFE) with polyvinylidene fluoride (PVDF), the early saturation of P(VDF-TrFE-CFE) is substantially suppressed, giving rise to concomitant enhancement of dielectric permittivity and breakdown strength. An ultrahigh energy density of 19.6 J/cm3 is thus achieved at ∼640 kV/mm, which is 1600% greater than Ue of the benchmark biaxially oriented polypropylene (BOPP, 1.2 J/cm3 at 640 kV/mm). Results of phase field simulations reveal that the interfaces between PVDF and P(VDF-TrFE-CFE) play a critical role by not only suppressing early saturation of electrical polarization in P(VDF-TrFE-CFE) but also inducing additional interfacial polarization. Binary phase diagram of P(VDF-TrFE-CFE)/PVDF blends is also systematically explored with their dielectric and energy storage behavior studied.
AB - Polymers with high dielectric strength and favorable flexibility have been considered promising materials for dielectrics and energy storage applications, while the achievable energy density (Ue) of polymer is rather limited by the intrinsic low dielectric constant and ferroelectric hysteresis. Polyvinylidene fluoride-trifluoroethylene-chlorofluoroethylene (P(VDF-TrFE-CFE)) with ultrahigh ϵr of >50 is considered promising in achieving high Ue of polymer dielectrics. However, P(VDF-TrFE-CFE) only exhibits moderate Ue due to the early saturation of electrical polarization at low electric field. In this contribution, we show that, by blending P(VDF-TrFE-CFE) with polyvinylidene fluoride (PVDF), the early saturation of P(VDF-TrFE-CFE) is substantially suppressed, giving rise to concomitant enhancement of dielectric permittivity and breakdown strength. An ultrahigh energy density of 19.6 J/cm3 is thus achieved at ∼640 kV/mm, which is 1600% greater than Ue of the benchmark biaxially oriented polypropylene (BOPP, 1.2 J/cm3 at 640 kV/mm). Results of phase field simulations reveal that the interfaces between PVDF and P(VDF-TrFE-CFE) play a critical role by not only suppressing early saturation of electrical polarization in P(VDF-TrFE-CFE) but also inducing additional interfacial polarization. Binary phase diagram of P(VDF-TrFE-CFE)/PVDF blends is also systematically explored with their dielectric and energy storage behavior studied.
UR - http://www.scopus.com/inward/record.url?scp=84991628940&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84991628940&partnerID=8YFLogxK
U2 - 10.1021/acsami.6b10016
DO - 10.1021/acsami.6b10016
M3 - Article
AN - SCOPUS:84991628940
VL - 8
SP - 27236
EP - 27242
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
SN - 1944-8244
IS - 40
ER -