Acoustic imaging of thick biological tissue

Elena Maeva, Fedar Severin, Chiaki Miyasaka, Bernhard R. Tittmann, Roman Gr Maev

Research output: Contribution to journalArticle

13 Scopus citations

Abstract

Up to now, biomedical imaging with ultrasound for observing a cellular tissue structure has been limited to very thinly sliced tissue at very high ultrasonic frequencies, i.e., 1 GHz. In this paper, we present the results of a systematic study to use a 150 to 200 MHz frequency range for thickly sliced biological tissue. A mechanical scanning reflection acoustic microscope (SAM) was used for obtaining horizontal crosssectional images (C-scans) showing cellular structures. In the study, sectioned specimens of human breast cancer and tissues from the small intestine were prepared and examined. Some accessories for biomedical application were integrated into our SAM (Sonix HS-1000 and Olympus UH-3), which operated in pulse-wave and tone-burst wave modes, respectively. We found that the frequency 100 to 200 MHz provides optimal balance between resolution and penetration depth for examining the thickly sliced specimens. The images obtained with the lens focused at different depths revealed cellular structures whose morphology was very similar to that seen in the thinly sectioned specimens with optical and scanning acoustic microscopy. The SAM operation in the pulse-echo mode permits the imaging of tissue structure at the surface, and it also opens up the potential for attenuation imaging representing reflection from the substrate behind the thick specimen. We present such images of breast cancer proving the methods applicability to overall tumor detection. SAM with a high-frequency tone-burst ultrasonic wave reveals details of tissue structure, and both methods may serve as additional diagnostic tools in a hospital environment.

Original languageEnglish (US)
Article number5116861
Pages (from-to)1352-1358
Number of pages7
JournalIEEE transactions on ultrasonics, ferroelectrics, and frequency control
Volume56
Issue number7
DOIs
StatePublished - Jul 1 2009

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Acoustics and Ultrasonics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Acoustic imaging of thick biological tissue'. Together they form a unique fingerprint.

  • Cite this

    Maeva, E., Severin, F., Miyasaka, C., Tittmann, B. R., & Maev, R. G. (2009). Acoustic imaging of thick biological tissue. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 56(7), 1352-1358. [5116861]. https://doi.org/10.1109/TUFFC.2009.1191